厚生労働省発生食 0307 第 7 号 令 和 5 年 3 月 7 日

薬事・食品衛生審議会 会長 奥田 晴宏 殿

厚生労働大臣 加藤 勝信 (公印省略)

諮問書

食品衛生法(昭和22年法律第233号)第13条第1項の規定に基づき、下記の事項について、貴会の意見を求めます。

記

1 次に掲げる農薬等の食品中の残留基準の設定について

動物用医薬品オルメトプリム 農薬・添加物ジフェノコナゾール 農薬インピルフルキサム 農薬セトキシジム 農薬ピカルブトラゾクス 農薬ピジフルメトフェン 農薬ビフェントリン 農薬ピリベンカルブ 農薬フルキサピロキサド

以上

薬事・食品衛生審議会 食品衛生分科会長 村田 勝敬 殿

> 薬事・食品衛生審議会食品衛生分科会 農薬・動物用医薬品部会長 穐山 浩

薬事・食品衛生審議会食品衛生分科会 農薬・動物用医薬品部会報告について

令和5年3月7日付け厚生労働省発生食0307第7号をもって諮問された、食品衛生法(昭和22年法律第233号)第13条第1項の規定に基づくピジフルメトフェンに係る食品中の農薬の残留基準の設定について、当部会で審議を行った結果を別添のとおり取りまとめたので、これを報告する。

ピジフルメトフェン

今般の残留基準の検討については、農薬取締法(昭和23年法律第82号)に基づく農薬登録申請(新規製剤の登録申請)に伴う基準値設定依頼が農林水産省からなされたこと及び関連企業から「国外で使用される農薬等に係る残留基準の設定及び改正に関する指針について」に基づく残留基準の設定要請がなされたことに伴い、食品安全委員会において厚生労働大臣からの依頼に伴う食品健康影響評価がなされたことを踏まえ、農薬・動物用医薬品部会において審議を行い、以下の報告を取りまとめるものである。

1. 概要

(1) 品目名:ピジフルメトフェン[Pydiflumetofen (ISO)]

(2)分類:農薬

(3) 用 途:殺菌剤

ルメトキシ-ピラゾール-カルボキサミド系の殺菌剤である。コハク酸脱水素酵素阻害剤のグループに属し、植物病原菌細胞内のミトコンドリア電子伝達系複合体Ⅱに作用することにより、病原菌の発芽管伸長、胞子発芽、菌糸生育を阻害し、殺菌効果を示すと考えられている。

(4) 化学名及びCAS番号

(RS)-3-(Difluoromethyl)-N-methoxy-1-methyl-N-(1-(2, 4, 6-trichlorophenyl)propan-2-yl)-1H-pyrazole-4-carboxamide (IUPAC)

1*H*-Pyrazole-4-carboxamide, 3-(difluoromethyl)-*N*-methoxy-1-methyl-*N*-[1-methyl-2-(2, 4, 6-trichlorophenyl)ethyl]- (CAS: No. 1228284-64-7)

(5) 構造式及び物性

(ラセミ体 R体: S体 = 1:1)

分 子式 $C_{16}H_{16}C1_3F_2N_3O_2$

分子量 426.67

水溶解度 $1.5 \times 10^{-3} \text{ g/L } (25^{\circ}\text{C})$ 分配係数 $\log_{10}\text{Pow} = 3.8 \ (25^{\circ}\text{C})$

2. 適用の範囲及び使用方法

本剤の適用の範囲及び使用方法は以下のとおり。

(1) 国内での使用方法

今般の基準値設定依頼に当たって、農薬取締法に基づく農薬登録申請がなされている項目を四角囲いしている。

① 18.3%ピジフルメトフェンフロアブルA

作物名	適用	希釈倍数	使用液量	使用時期	本剤の 使用回数	使用方法	ピジフルメトフェン を含む農薬の 総使用回数
	赤さび病	1500~2000倍	50~150 L/10 a	収穫7日前		散布	
小麦		250~500倍	25 L/10 a	まで			
	赤かび病	8~16倍	800 mL/10 a		2回以内	無人航空機 による散布	2回以内
1.4	91.19 O 1F1	1500~2000倍	60~150 L/10 a	収穫14日前		散布	
大麦		8~16倍	800 mL/10 a	まで		無人航空機による散布	

② 18.3%ピジフルメトフェンフロアブルB

作物名	適用	希釈倍数	使用液量	使用時期	本剤の 使用回数	使用方法	ピジフルメトフェン を含む農薬の 総使用回数
りんご	黒星病 うどんこ病 斑点落葉病	5000倍	200~500 L/10 a	収穫前日まで	2回以内	散布	2回以内

③ 6.8%ピジフルメトフェン・11.4%ジフェノコナゾールフロアブル

作物名	適用	希釈倍数	使用液量	使用時期	本剤の 使用回数	使用方法	ピジフルメトフェン を含む農薬の 総使用回数
かんきつ	灰色かび病	3000倍	200~700 L/10 a	収穫7日前まで	2回以内	散布	2回以内

(2) 海外での使用方法

てんさい、だいこん類 (ラディッシュを含む。) の根等に係る残留基準の設定につ いて今回インポートトレランス申請がなされており、今回申請に係る作物を四角囲い している。

① 18.3%ピジフルメトフェンフロアブル (米国)

作物名	1回当たり 使用量	総使用量	使用時期	使用回数 (年間当た り使用量)	使用方法
穀類 (大麦、オート麦、ラ イ麦、小麦)	0.134~0.178 lb ai/acre	0.31 lb ai/acre/year (347 g ai/ha/year)	Feekes growth stage*10.3~ 10.5.4	2回まで	
根菜 Group 1A	0.044~0.067 lb ai/acre	0. 268 1b		457	
根菜及び塊茎状野菜 の葉(チコリ) Group 2	0.045~0.067 lb ai/acre	ai/acre/year (300 g ai/ha/year)	収穫7日前まで	4回まで	
からし菜及び あぶらな科葉菜 Group 4-16B	0.067~0.178 lb ai/acre	0.357 lb ai/acre/year (400 g ai/ha/year)		2回まで	茎葉散布
あぶらな科結球葉 及び茎野菜 Group 5-16	0.067~0.111 lb ai/acre	0.335 lb ai/acre/year (375 g ai/ha/year)	収穫当日まで**	3回まで	
レタス、ほうれんそう (葉菜類) Group 4-16A	0.065~0.178 lb ai/acre	0.357 lb ai/acre/year (400 g ai/ha/year)		2回まで	
トマト、ピーマン、	0.065~0.112 lb ai/acre	茎葉散布のみ: 0.224 lb ai/acre/year			
なす、その他のなす科 野菜 (果菜類)	0.112 lb ai/acre	(251 g ai/ha/year) 土壌及び茎葉散布: 0.357 lb	植付時、 植付後14~21日	茎葉散布は 2回まで	作条散布
Group 8-10	0.112~0.178 lb ai/acre	ai/acre/year (400 g ai/ha/year)	植付前~植付時		土壤散布
まめ科野菜 (乾燥及び未成熟) Group 6	0.067~0.178 lb ai/acre	0.357 lb ai/acre/year (400 g ai/ha/year)	収穫14日前まで	2回まで	茎葉散布
きゅうり、カボチャ、	0.065~0.112 lb ai/acre	茎葉散布のみ: 0.224 lb	収穫当日まで**		
すいか、メロン類 果実、まくわうり (うり科野菜)	0.112 lb ai/acre	ai/acre/year (251 g ai/ha/year) 土壌及び茎葉散布: 0.357 lb	植付時、 植付後7~14日、 植付後14~21日	茎葉散布は 2回まで	作条散布
Group 9	0.112~0.178 lb ai/acre	ai/acre/year (400 g ai/ha/year)	植付前~植付時		土壌散布

ai:active ingredient (有効成分) 1b:ポンド (1 1b = 0.45359237 kg) acre:エーカー (1 acre = 約4,047 m²) *Feekes scale で示される植物の生長段階

^{**}収穫当日までとなっているが、散布後12時間は収穫を含め、圃場に入れないと規定している。

① 18.3%ピジフルメトフェンフロアブル(米国) (つづき)

作物名	1回当たり 使用量	総使用量	使用時期	使用回数 (年間当た り使用量)	使用方法
かんきつ類 Group 10-10	0.044~0.074 lb ai/acre	0.30 lb ai/acre/year (336 g ai/ha/year)		4回まで	
ケインベリー Group 13-07A ブルーベリー及び ブッシュベリー Group 13-07B	0.067~0.134 lb ai/acre	0.268 lb 収穫当日まで** ai/acre/year (300 g ai/ba/year)		2回まで	
綿実	0.044~0.112 lb ai/acre	0.224 lb ai/acre/year (251 g ai/ha/year)	収穫30日前まで r)		茎葉散布
アーモンド	0.044~0.089 lb ai/acre				
ピスタチオ 木の実類 (アーモンド、ピスタ	0.067~0.089 lb ai/acre 0.044~0.089	0.268 lb ai/acre/year (300 g ai/ha/year)	収穫14日前まで 3回まで		
チオを除く) Group 14-12	lb ai/acre				

② 6.8%ピジフルメトフェン・11.4%ジフェノコナゾールフロアブル (米国)

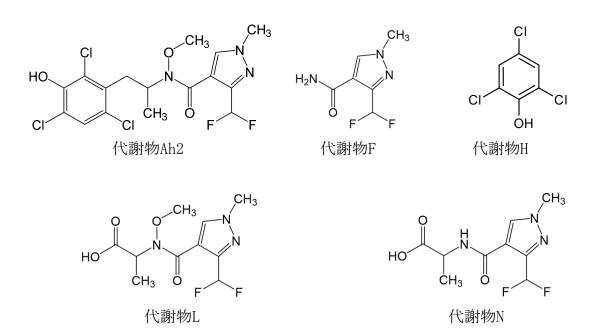
作物名	1回当たり 使用量	総使用量	使用時期	使用回数 (年間当た り使用量)	使用方法
てんさい	0.054~0.067 lb ai/acre			4回まで	
根菜 Group 1A	0.053~0.067 lb ai/acre	067 re 0.268 lb 収穫7日前まで		4四まで	II. Halle III.
根菜及び 塊茎状野菜の葉 Group 2	0.067 lb ai/acre	ai/acre/year (300 g ai/ha/year)		3回まで	茎葉散布
核果類	0.054~0.067 lb ai/acre		収穫当日まで*	4回まで	

^{*}収穫当日までとなっているが、散布後12時間は収穫を含め、圃場に入れないと規定している。

3. 代謝試験

(1) 植物代謝試験

植物代謝試験が、小麦、トマト及びなたねで実施されており、可食部で $10\%TRR^{(\pm)}$ 以上認められた代謝物はなかった。


注) %TRR:総放射性残留物(TRR: Total Radioactive Residues) 濃度に対する比率(%)

(2) 家畜代謝試験

家畜代謝試験が、泌乳山羊及び産卵鶏で実施されており、可食部で10%TRR以上認められた代謝物は、代謝物Ah(泌乳山羊の脂肪)、代謝物F(泌乳山羊の乳及び筋肉、産卵鶏の卵白及び筋肉)、代謝物G(泌乳山羊の腎臓、産卵鶏の卵白)、代謝物H(泌乳山羊の乳、産卵鶏の卵黄、卵白、筋肉及び脂肪)、代謝物L(泌乳山羊の乳及び腎臓)及び代謝物N(泌乳山羊の乳)であった。

【代謝物略称一覧】

略称	JMPR評価書の 略称	化学名
Ah	Hydroxylated Pydiflumetofen	ピジフルメトフェンのヒドロキシ体
Ah2		3-(ジフルオロメチル)- <i>N</i> -メトキシ-1-メチル- <i>N</i> -[1-メチル- 2-(2, 4, 6-トリクロロ-3-ヒドロキシフェニル)エチル]ピラゾール-4- カルボキサミド
F	SYN508272	3-(ジフルオロメチル)-1-メチルピラゾール-4-カルボキサミド
G	NOA449410	3-(ジフルオロメチル)-1-メチル-11-ピラゾール-4-カルボン酸
Н	2, 4, 6-TCP	2, 4, 6-トリクロロフェノール
L	SYN548263	2-[[3-(ジフルオロメチル)-1-メチルピラゾール-4-カルボニル]- メトキシ-アミノ]プロパン酸
N	SYN548264	2-[[3-(ジフルオロメチル)-1-メチルピラゾール-4-カルボニル]- アミノ]プロパン酸

注)残留試験の分析対象及び暴露評価対象となっている代謝物について構造式を明記した。

4. 作物残留試験

(1) 分析の概要

【国内】

- ① 分析対象物質
 - ・ピジフルメトフェン

② 分析法の概要

試料からアセトニトリルで抽出し、n-ヘキサンに転溶する。シリカゲルカラムを用いて精製した後、液体クロマトグラフ・タンデム型質量分析計(LC-MS/MS)で定量する。

または、試料からアセトニトリル・水(4:1)混液で抽出し、HLBカラムを用いて精製した後、LC-MS/MSで定量する。

定量限界: 0.005~0.01 mg/kg

【海外】

- ① 分析対象物質
 - ・ピジフルメトフェン

② 分析法の概要

試料からアセトニトリル・水(4:1)混液又はアセトニトリルで抽出し、必要に応じて C_{18} 粉末を加えて分散し、HLBカラム又はスチレンジビニルベンゼン-N-ビニルピロリドン共重合体カラムを用いて精製した後、LC-MS/MSで定量する。

定量限界: 0.01 mg/kg

(2) 作物残留試験結果

国内で実施された作物残留試験の結果の概要については別紙1-1、海外で実施された 作物残留試験の結果の概要については別紙1-2を参照。

5. 畜産物における推定残留濃度

本剤については、飼料として給与した作物を通じ家畜の筋肉等への移行が想定される ことから、飼料中の残留農薬濃度及び動物飼養試験の結果を用い、以下のとおり畜産物 中の推定残留濃度を算出した。

(1) 分析の概要

- ① 分析対象物質
 - ・ピジフルメトフェン

- ・代謝物Ah2及びその抱合体
- · 代謝物F
- ・代謝物H及びその抱合体
- ・代謝物L及びその抱合体
- · 代謝物N

② 分析法の概要

i) ピジフルメトフェン

筋肉、肝臓、腎臓、乳及び卵は、試料からアセトニトリル・水(4:1)混液で抽出し、必要に応じ固相カラムで精製後、LC-MS/MSで定量する。脂肪は、試料をn-ヘキサンに溶解した後、アセトニトリル・水(4:1)混液で抽出し、LC-MS/MSで定量する。

定量限界: 0.01 mg/kg

ii) 代謝物H(抱合体を含む。)

筋肉、肝臓、腎臓、乳及び卵は、試料からアセトニトリル・水(4:1)混液で抽出する。脂肪は、試料をn-ヘキサンに溶解した後、アセトニトリル・水(4:1)混液で抽出する。抽出液の溶媒を除去し、 β -グルクロニダーゼで加水分解した後、必要に応じ固相カラムを用いて精製し、LC-MS/MSで定量する。

定量限界: 0.01 mg/kg

iii)代謝物F及び代謝物N

乳は、試料からアセトニトリルで抽出し、LC-MS/MSで定量する。

定量限界:代謝物F 0.01 mg/kg 代謝物N 0.01 mg/kg

iv) 代謝物Ah2 (抱合体を含む。) 及び代謝物L (抱合体を含む。)

肝臓及び腎臓は、試料からアセトニトリル・水(4:1)混液で抽出し、 β -グルクロニダーゼで加水分解した後、固相カラムを用いて精製し、LC-MS/MSで定量する。

定量限界:代謝物Ah2(抱合体を含む。) 0.01 mg/kg 代謝物L(抱合体を含む。) 0.01 mg/kg

(2) 家畜残留試験(動物飼養試験)

① 乳牛を用いた残留試験

乳牛(ホルスタイン・フリージアン種、体重540~720 kg、3頭/群)に対して、飼料中濃度として15、45及び150 ppm に相当する量のピジフルメトフェンを含むゼラチンカプセルを28日間にわたり強制経口投与し、筋肉、脂肪、肝臓及び腎臓に含まれるピジフルメトフェン及び代謝物H(抱合体を含む。)の濃度を、肝臓及び腎臓において代謝物Ah2(抱合体を含む。)及び代謝物L(抱合体を含む。)の濃度をLC-MS/MSで測定した。乳については投与1、3、5、7、10、14、17、21、24及び28日に1日2回採取した乳に含まれるピジフルメトフェン、代謝物F、代謝物H(抱合体を含む。)及び代謝物Nの濃度をLC-MS/MSで測定した。代謝物F及び代謝物Nは、すべて定量限界未満であった。結果は表1を参照。

表1. 乳牛の試料中の残留濃度 (mg/kg)

		15 ppm投与群	45 ppm投与群	150 ppm投与群	
	ピジフルメトフェン	_	<0.01 (最大)	〈0.01 (最大)	
			<0.01 (平均)	(0.01 (平均)	
筋肉	代謝物H(抱合体を含む。)	_	_	<0.01 (最大) <0.01 (平均)	
	合計(ピジフルメトフェン+	<0.02 (最大)	<0.02 (最大)	(0.01 (平均)	
	代謝物H (抱合体を含む。)) ^{注1)}	(0.02 (取火)	(0.02 (最大)	(0.02 (取火)	
	ピジフルメトフェン	0.01 (最大)	0.06 (最大)	0.11 (最大)	
脂肪		0.01 (平均)	0.05 (平均)	0.08 (平均)	
(腎臓	代謝物H(抱合体を含む。)	ND (最大)	0.01 (最大)	0.01 (最大)	
周囲 脂肪)		ND (平均)	0.01 (平均)	0.01 (平均)	
カ日カノノ /	合計(ピジフルメトフェン+ 代謝物H (抱合体を含む。)) ^{注1)}	0.02(最大) 0.02(平均)	0.07 (最大) 0.06 (平均)	0.12 (最大) 0.09 (平均)	
		0.02 (最大)	0.06 (最大)	0.03 (平均)	
n	ピジフルメトフェン	0.01 (平均)	0.05 (平均)	0.10 (平均)	
脂肪 (腸間膜	代謝物H(抱合体を含む。)		_	<0.01 (最大)	
脂肪)		_	_	<0.01 (平均)	
月百九刀 <i>)</i>	合計(ピジフルメトフェン+	0.03 (最大)	0.07 (最大)	0.18 (最大)	
	代謝物H(抱合体を含む。)) ^{注1)}	0.02 (平均)	0.06 (平均)	0.11 (平均)	
	ピジフルメトフェン	0.02(最大) 0.01(平均)	0.04 (最大) 0.02 (平均)	0 11 (最大) 0.05 (平均)	
脂肪		0.01 (十均)	0.02 (平均)	<0.03 (平均)	
(皮下	代謝物H(抱合体を含む。)	_	_	(0.01 (最大)	
脂肪)	合計(ピジフルメトフェン+	0.03 (最大)	0.05 (最大)	0.12 (最大)	
	代謝物H (抱合体を含む。)) ^{注1)}	0.02 (平均)	0.04 (平均)	0.06 (平均)	
	ピジフルメトフェン	0.02 (最大)	0.05 (最大)	0.12 (最大)	
		0.01 (平均)	0.04 (平均)	0.09 (平均)	
	 代謝物Ah2(抱合体を含む。)	0.06 (最大)	0.36 (最大)	0.59 (最大)	
		0.04 (平均)	0.22 (平均)	0.56 (平均)	
日子 0-5%	代謝物H(抱合体を含む。)	〈0.01 (最大)	0.03 (最大)	0.08 (最大)	
肝臓	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<0.01 (平均)	0.03 (平均)	0.07 (平均)	
	代謝物L(抱合体を含む。)	_	ND (最大)	〈0.01 (最大)	
	合計(ピジフルメトフェン+		ND (平均)	<0.01 (平均)	
	合計(ピンプルメトフェン+ 代謝物Ah2 (抱合体を含む。)+	0.09 (最大)	0.44 (最大)	0.79 (最大)	
	代謝物H(抱合体を含む。)) ^{注1)}	0.06 (平均)	0.28 (平均)	0.72 (平均)	
1					

15 ppm投与群 45 ppm投与群 150 ppm投与群 <0.01 (最大) 0.03 (最大) ピジフルメトフェン 0.02 (平均) <0.01 (平均) 0.24 (最大) 0.58 (最大) 0.06 (最大) 代謝物Ah2(抱合体を含む。) 0.05 (平均) 0.17 (平均) 0.41 (平均) 0.21 (最大) 0.01 (最大) 0.05 (最大) 代謝物H(抱合体を含む。) 腎臓 0.01 (平均) 0.05 (平均) 0.17 (平均) <0.01 (最大) 0.02 (最大) 0.10 (最大) 代謝物L(抱合体を含む。) <0.01 (平均) 0.02 (平均) 0.08 (平均) 合計(ピジフルメトフェン+ 0.08 (最大) 0.30 (最大) 0.81 (最大) 代謝物Ah2(抱合体を含む。)+ 0.07 (平均) 0.23 (平均) 0.60 (平均) 代謝物H(抱合体を含む。)) 注1) ピジフルメトフェン <0.01 (平均) 0.01 (平均) 代謝物F <0.01 (平均) 代謝物H(抱合体を含む。) <0.01 (平均) 0.01 (平均) 0.08 (平均) 到,注2)

表1. 乳牛の試料中の残留濃度 (mg/kg) (つづき)

-:分析せず、ND:検出限界未満 <0.0025 mg/kg、定量限界:0.01 mg/kg、

代謝物N

合計(ピジフルメトフェン+

代謝物H(抱合体を含む。)) 注1)

注1) 定量限界未満、検出限界未満及び分析を行っていない場合は定量限界相当の残留があった ものとして算出した。

<0.02 (平均)

0.02 (平均)

<0.01 (平均)

0.09 (平均)

注2) 投与期間中に採取した乳中の濃度を1頭ずつ別々に算出し、その平均値を求めた。

上記の結果に関連して、JMPRは、乳牛及び肉牛の最大飼料由来負荷^{注1)}をともに45 ppm、平均的飼料由来負荷^{注2)}をそれぞれ13及び19 ppmと評価している。

- 注1) 最大飼料由来負荷 (Maximum dietary burden): 飼料の原料に農薬が最大まで残留していると仮定した場合に、飼料の摂取によって畜産動物が暴露されうる最大濃度。飼料中濃度として表示される。
- 注2) 平均的飼料由来負荷 (Mean dietary burden): 飼料の原料に農薬が平均的に残留していると仮定した場合に(作物残留試験から得られた残留濃度の中央値を試算に用いる)、飼料の摂取によって畜産動物が暴露されうる平均濃度。飼料中濃度として表示される。

② 産卵鶏を用いた残留試験

産卵鶏(テトラブラウン種、体重1.753~2.490 kg、10羽/投与群)に対して、飼料中濃度として3、9及び30 ppm のピジフルメトフェンを含むプレミックス飼料を28日間にわたり混餌投与し、筋肉、脂肪、肝臓及び腎臓に含まれるピジフルメトフェン及び代謝物H(抱合体を含む。)の濃度をLC-MS/MSで測定した。卵については、1、

3、7、10、14、17及び24日目に1日2回採取し、ピジフルメトフェン及び代謝物H(抱合体を含む。)の濃度をLC-MS/MSで測定した。結果は表2を参照。

表2. 産卵鶏の試料中の残留濃度 (mg/kg)

	1		I	T
		3 ppm投与群	9 ppm投与群	30 ppm投与群
	ピジフルメトフェン	_		<0.01 (最大)
	レマノルグドノエマ	_	_	<0.01 (平均)
筋肉	代謝物H(抱合体を含む。)	_	_	<0.01 (最大)
別內	下的初间(10日本名音号。)			<0.01 (平均)
	合計 ^{注)}	<0.02 (最大)	<0.02 (最大)	<0.02 (最大)
	ПРІ	<0.02 (平均)	〈0.02 (平均)	<0.02 (平均)
	ピジフルメトフェン	_	_	<0.01 (最大)
脂肪				<0.01 (平均)
(腹膜	代謝物H(抱合体を含む。)	_	_	<0.01 (最大)
	TOWNS (IEE PEECES)			<0.01 (平均)
脂肪)	合計 ^{注)}	<0.02 (最大)	<0.02 (最大)	<0.02 (最大)
	H PI	<0.02 (平均)	<0.02 (平均)	〈0.02 (平均)
	ピジフルメトフェン	_	_	〈0.01 (最大)
脂肪				〈0.01 (平均)
(皮下	代謝物H(抱合体を含む。)	_	_	〈0.01 (最大)
脂肪)	(321) (32)	()	(- 1)	〈0.01 (平均)
カロカクナノ	合計 ^{注)}	<0.02 (最大)	〈0.02 (最大)	〈0.02 (最大)
		<0.02 (平均)	<0.02 (平均)	〈0.02 (平均)
	ピジフルメトフェン	_	_	〈0.01 (最大)
				(0.01 (平均)
肝臓	代謝物H(抱合体を含む。)	_	_	〈0.01 (最大)
		(0.00 (FL)	(0.00 (FL)	(0.01 (平均)
	合計注)	(0.02 (最大)	(0.02 (最大)	〈0.02 (最大)
		(0.02 (平均)	(0.02 (平均)	(0.02 (平均)
	ピジフルメトフェン	ND (最大)	(0.01 (最大)	(0.01 (最大)
		ND (平均)	(0.01 (平均)	(0.01 (平均)
腎臓	代謝物H(抱合体を含む。)	〈0.01 (最大)	0.019 (最大)	0.050 (最大)
		〈0.01 (平均)	0.017 (平均)	0.045 (平均)
	合計注)	〈0.02 (最大)	0.029 (最大)	0.060 (最大)
		〈0.02 (平均)	0.027 (平均)	0.055 (平均)
	ピジフルメトフェン	〈0.01 (最大)	0.011 (最大)	0.027 (最大)
		〈0.01 (平均)	0.010 (平均)	0.021 (平均)
戼	代謝物H(抱合体を含む。)	〈0.01 (最大)	0.013 (最大)	0.039 (最大)
		〈0.01 (平均)	0.011 (平均)	0.031 (平均)
	合計注)	〈0.02 (最大)	0.024 (最大)	0.066 (最大)
		<0.02 (平均)	0.021 (平均)	0.047(平均)

^{- :} 分析せず、ND: 検出限界未満 <0.0025 mg/kg、定量限界:0.01 mg/kg、

注)定量限界未満、検出限界未満及び分析を行っていない場合は定量限界相当の残留があったものとして算出した。

上記の結果に関連して、JMPRは、産卵鶏及び肉用鶏の最大飼料由来負荷を8.7 ppm、平均飼料由来負荷を3.0 ppmと評価している。

(3) 推定残留濃度

牛及び鶏について、最大及び平均的飼料由来負荷と家畜残留試験結果から、畜産物中の推定残留濃度を算出した。結果は表3-1(最大残留濃度:牛)、3-2(平均的な残留濃度:牛)、4-1(最大残留濃度:鶏)及び4-2(平均的な残留濃度:鶏)を参照。

表3-1.	畜産物中のピジフルメ	トフェンの推定残留濃度	: 牛	(mg/kg)	(最大残留濃度)

	筋肉	脂肪	肝臓	腎臓	乳
乳牛	<0.01	0.06	0.05	<0.01	<0.01
肉牛	<0.01	0.06	0.05	<0.01	

表3-2. 畜産物中のピジフルメトフェン、代謝物H(抱合体を含む。)及び代謝物Ah2(抱合体を含む。代謝物Ah2は、肝臓及び腎臓のみ。)を含む推定残留濃度:牛(mg/kg)(平均的な残留濃度)

	筋肉*	脂肪*	肝臓**	腎臓**	乳*
乳牛	<0.02	0.02	0.05	0.06	<0.02
肉牛	<0.02	0.02	0.09	0.09	

*: ピジフルメトフェン及び代謝物H(抱合体を含む。)を含む。

**: ピジフルメトフェン、代謝物H(抱合体を含む。)及び代謝物Ah2(抱合体を含む。)を含む。

表4-1. 畜産物中のピジフルメトフェンの推定残留濃度:鶏(mg/kg) (最大残留濃度)

	筋肉	脂肪	肝臓	腎臓	可
産卵鶏	<0.01	<0.01	<0.01	<0.01	0.011
肉用鶏	<0.01	<0.01	<0.01	<0.01	

表4-2. 畜産物中のピジフルメトフェン及び代謝物H(抱合体を含む。)を含む推定残留濃度:鶏(mg/kg)(平均的な残留濃度)

	筋肉*	脂肪*	肝臓*	腎臓*	戼*
産卵鶏	<0.02	<0.02	<0.02	<0.02	<0.02
肉用鶏	<0.02	<0.02	<0.02	<0.02	

*: ピジフルメトフェン及び代謝物H(抱合体を含む。)を含む。

6. ADI及びARfDの評価

食品安全基本法(平成15年法律第48号)第24条第1項第1号の規定に基づき、食品安全 委員会あて意見を求めたピジフルメトフェンに係る食品健康影響評価において、以下の とおり評価されている。

(1) ADI

無毒性量: 9.9 mg/kg 体重/day

(動物種) 雄ラット

(投与方法) 混餌

(試験の種類) 慢性毒性/発がん性併合試験

(期間) 2年間

安全係数:100

ADI: 0.099 mg/kg 体重/day

マウスを用いた発がん性試験において、雄で肝細胞腺腫及び癌の発生頻度増加が認められたが、メカニズム試験及び遺伝毒性試験の結果から、腫瘍発生機序は遺伝毒性メカニズムによるものとは考え難く、評価に当たり閾値を設定することは可能であると考えられた。また、メカニズム試験の結果から、ピジフルメトフェンによる肝細胞腫瘍発生機序のヒトへの外挿性は低いと考えられた。

(参考)

評価に供された遺伝毒性試験のin vitro試験の一部で陽性の結果が得られたが、小核試験を始めin vivo試験では陰性の結果が得られたので、ピジフルメトフェンは生体にとって問題となる遺伝毒性はないと結論されている。

(2) ARfD

無毒性量:30 mg/kg 体重/day

(動物種) ラット

(投与方法) 強制経口

(試験の種類) 発生毒性試験

(投与期間) 妊娠6~19日

安全係数:100

ARfD: 0.3 mg/kg 体重

7. 諸外国における状況

JMPRにおける毒性評価が行われ、2018年にADI及びARfDが設定されている。国際基準は小麦、大豆等に設定されている。

米国、カナダ、EU、豪州及びニュージーランドについて調査した結果、米国及びカナ

ダにおいててんさい、かんきつ等に、豪州及びニュージーランドにおいてばれいしょ、 ぶどう等に基準値が設定されている。

8. 残留規制

(1) 残留の規制対象

ピジフルメトフェンとする。

農産物について、植物代謝試験において10%TRR以上認められた代謝物はなかったことから、規制対象はピジフルメトフェンのみとする。

畜産物について、家畜残留試験において、代謝物Ah2(抱合体を含む。)、代謝物F、代謝物H(抱合体を含む。)、代謝物L(抱合体を含む。)及び代謝物Nの分析が行われている。代謝物Ah2(抱合体を含む。)、代謝物H(抱合体を含む。)及び代謝物L(抱合体を含む。)の残留濃度は、牛の肝臓及び腎臓においてピジフルメトフェンと比較して同等又はそれ以上残留しているものの、牛の脂肪及び肝臓では親化合物の検出が見られること、乳においてのみ分析された代謝物F及び代謝物Nは定量限界未満であることから畜産物の規制対象には代謝物Ah2(抱合体を含む。)、代謝物F、代謝物H(抱合体を含む。)、代謝物L(抱合体を含む。)及び代謝物Nを含めず、ピジフルメトフェンのみとする。

なお、JMPR及び米国の規制対象はピジフルメトフェンとしている。

(2) 基準値案

別紙2のとおりである。

9. 暴露評価

(1) 暴露評価対象

農産物にあってはピジフルメトフェンとし、畜産物のうち、陸棲哺乳類に属する動物の肝臓及び腎臓にあってはピジフルメトフェン、代謝物H(抱合体を含む。)及び代謝物Ah2(抱合体を含む。)とし、その他の畜産物にあってはピジフルメトフェン及び代謝物H(抱合体を含む。)とする。

農産物について、植物代謝試験において10%TRR以上認められた代謝物はなかったことから、暴露評価対象はピジフルメトフェンのみとする。

畜産物について、家畜残留試験において、牛の肝臓及び腎臓で代謝物H(抱合体を含む。)及び代謝物Ah2(抱合体を含む。)が、ピジフルメトフェンと同等又はそれ以上に残留することから、陸棲哺乳類に属する動物の肝臓及び腎臓にあってはこれらの代謝物を暴露評価対象に加えることとした。代謝物L(抱合体を含む。)については、牛の腎臓のみで検出され、平均的試料由来負荷相当では、0.01 mg/kg程度であるため、暴露評価対象には含めないこととする。

JMPRにおいて、農産物中の暴露評価対象はピジフルメトフェンとしている。また、

畜産物中の暴露評価対象は、陸棲哺乳類に属する動物の肝臓及び腎臓においてはピジフルメトフェン、代謝物H(抱合体を含む。)及び代謝物Ah2(抱合体を含む。)、その他の畜産物においてはピジフルメトフェン及び代謝物H(抱合体を含む。)としている。

なお、食品安全委員会は、食品健康影響評価において、農産物及び畜産物中の暴露 評価対象物質をピジフルメトフェン(親化合物のみ)としている。

(2) 暴露評価結果

① 長期暴露評価

1日当たり摂取する農薬の量のADIに対する比は、以下のとおりである。詳細な暴露評価は別紙3を参照。

	TMDI/ADI(%) ^{注)}
国民全体(1歳以上)	42. 3
幼小児(1~6歳)	63. 0
妊婦	38. 1
高齢者(65歳以上)	49. 5

注) 各食品の平均摂取量は、平成17~19年度の食品摂取頻度・摂取量調査の特別集 計業務報告書による。

TMDI試算法:基準値案×各食品の平均摂取量

<参考>

畜産物中の暴露評価対象が、陸棲哺乳類に属する動物の肝臓及び腎臓においては ピジフルメトフェン、代謝物H(抱合体を含む。)及び代謝物Ah2(抱合体を含 む。)、その他の畜産物においてはピジフルメトフェン及び代謝物H(抱合体を含 む。)であることから、畜産物については代謝物も含めて暴露評価を実施した。

	EDI/ADI (%) 注)
国民全体(1歳以上)	11.8
幼小児(1~6歳)	17. 7
妊婦	10.7
高齢者(65歳以上)	13.9

注) 各食品の平均摂取量は、平成17~19年度の食品摂取頻度・摂取量調査の特別集 計業務報告書による。

EDI試算法:作物残留試験成績の平均値×各食品の平均摂取量

② 短期暴露評価

各食品の短期推定摂取量(ESTI)を算出したところ、国民全体(1歳以上)及び幼小児(1~6歳)のそれぞれにおける摂取量は急性参照用量(ARfD)を超えていない 注 。詳細な暴露評価は別紙4-1及び4-2を参照。

注) 基準値案、作物残留試験における最高残留濃度(HR)又は中央値(STMR)を用い、平成17~19年度の食品摂取頻度・摂取量調査及び平成22年度の厚生労働科学研究の結果に基づきESTIを算出した。

ピジフルメトフェンの作物残留試験一覧表 (国内)

tts /fil/	試験		注1			
農作物	圃場数	剤型	使用量・使用方法	回数	経過日数	
小麦 (玄麦)	6	18. 3%フロアブル	1500倍散布 139~150 L/10 a	<u>2</u>	<u>7</u> , 14, 21	圃場A: 0. 120 圃場B: 0. 358 圃場C: 0. 198 圃場D: 0. 198 圃場E: 0. 068 圃場F: 0. 188
大麦 (玄麦)	3	18. 3%フロアブル	1500倍散布 133~150 L/10 a	<u>2</u>	7, <u>14</u> , 21	圃場A:1.02 圃場B:0.726 圃場C:1.64
温州みかん (施設) (果肉) 温州みかん	5	6.8%フロアブル	3000倍散布 607~667 L/10 a	<u>2</u>	<u>7</u> , 14, 21, 28	圃場A:<0.01 圃場B:<0.01 圃場C:<0.01 圃場B:<0.01
(露地) (果肉)	1					圃場F:<0.01
温州みかん(施設)(果皮)	5	6.8%フロアブル	3000倍散布 607~667 L/10 a	<u>2</u>	<u>7,</u> 14, 21, 28	圃場A:0.90 圃場B:0.66 圃場C:0.34 圃場D:0.76 圃場E:1.38
温州みかん (露地) (果皮)	1					圃場F:1.00
温州みかん (施設) (果実)	5	6.8%フロアブル	3000倍散布 607~667 L/10 a	<u>2</u>	<u>7,</u> 14, 21, 28	画場A:0.21 ^{注2)} (2回,28日) 画場B:0.16 ^{注2)} 画場C:0.07 ^{注2)} 画場D:0.14 ^{注2)} 画場E:0.28 ^{注2)}
温州みかん (露地) (果実)	1					圃場F:0. 23 ^{注2)}
かぼす (果実)	1	6.8%フロアブル	3000倍散布 696 L/10 a	<u>2</u>	<u>7,</u> 14, 21, 28	圃場A:0.21
すだち (果実)	1	6.8%フロアブル	3000倍散布 700 L/10 a	<u>2</u>	<u>7,</u> 14, 21, 28	圃場A:0.15
ゆず (果実)	1	6.8%フロアブル	3000倍散布 700 L/10 a	<u>2</u>	<u>7,</u> 14, 21, 28	圃場A:0.10
りんご (果実)	6	18. 3%フロアブル	5000倍散布 417~467 L/10 a	<u>2</u>	<u>1</u> , 3, 7	圃場A:0.34 圃場B:0.46 圃場C:0.15 圃場D:0.16 圃場E:0.32 圃場F:0.20 (2回,3日)

今回、新たに提出された作物残留試験成績に網を付けて示している。 注1) 当該農薬の登録又は申請された適用の範囲内で最も多量に用い、かつ最終使用から収穫までの期間を最短とした場合の作物残留試験(いわゆる最大使用条件下の作物残留試験)を複数の圃場で実施し、それぞれの試験から得られた残留濃度の最大値を示した。

表中、最大使用条件下の作物残留試験条件に、アンダーラインを付しているが、経時的に測定されたデータがある場合において、収穫までの期間が最短の場合にのみ最大残留濃度が得られるとは限らないため、最大使用条件以外で最大残留濃度が得られた場合は、その使用回数及び経過日数について())内に記載した。

注2) 果肉及び果皮の重量比から果実全体の残留濃度を算出した。

ピジフルメトフェンの作物残留試験一覧表 (米国)

農作物	試験		試験条件			残留濃度(mg/kg) ^{注)}	
展11-10	圃場数	剤型	使用量・使用方法	回数	経過日数	大笛侲及(mg/kg)	
					36	圃場A:0.820	
					49, 54, 59, 63, 68	圃場B:0.515 (2回,49日)	
					21	圃場C:1.06	
					28	圃場D:1.66	
					16	圃場E:1.90	
	10	10 000	0.13 + 0.18 lb ai/acre		27	圃場F:0.432	
	12	18.3%フロアブル	(146 + 202 g ai/ha) 茎葉散布	2	52	圃場G:0.081	
					24, 29, 34, 39, 45	圃場H: 0.305 (2回,24日)	
					45	圃場I:0.044	
					21	圃場J:2.56	
大麦 (玄麦)					26	圃場K:0.590	
(五及)					44	圃場L:0.188	
					36	圃場A:0.545	
					47	圃場B:0.200	
					42	圃場C:0.088	
					41	圃場D:0.460	
	9	18. 3%フロアブル	150 + 200 g ai/ha	<u>2</u>	50	圃場E:0.225	
			茎葉散布		40	圃場F:0.145	
					48	圃場G:0.580	
					42	圃場H: 0. 068	
					48	圃場I:0.115	
					<u>7</u>	圃場A:0.9155	
	9 6.8			-	<u> </u>	圃場B:5.6774	
				-	0, <u>7</u> , 14, 21, 28	圃場C:5.3385 (4回,14日)	
			0.067 lb ai/acre (75 g ai/ha) 茎葉散布		7	圃場D:1.5751	
		6.8%フロアブル		<u>4</u>	<u> </u>	圃場E:1.6782	
				- -	<u> </u>	圃場F:0.7746	
					<u> </u>	圃場G:0.7629	
					<u>+</u> 	圃場H: 1. 0122	
てんさい						圃場1:6.2738	
(葉部)					<u> </u>	圃場A:1.1	
					<u>+</u> 	圃場B:1.5	
			55		<u> </u>	圃場C:1.5	
				-	0, <u>7</u> , 13, 21, 29	圃場D:1.4	
	8 18.3%フロアブル 75 g ai/ha 茎葉散布 4	7	圃場E:1.5				
					<u> </u>	圃場F:3.7	
				-	<u> </u>	圃場G: 0. 97	
				-	<u> </u>	圃場H:3.4	
					<u> </u>	圃場A:0.1404	
				-	<u> </u>	圃場B:0.1655	
ラディッシュ	5	6.8%フロアブル	0.067 lb ai/acre (75 g ai/ha)	<u>4</u>	<u> </u>	圃場C:0.1664	
(根部)	9	0.0/0/ 4 / //	工業業散布	<u> </u>	<u> </u>	圃場D: 0. 1004	
				-	<u>'</u> 7	圃場E:0.0234	
					<u>'</u> <u>0</u>	圃場A:28.6	
						圃場A: 28. 6 圃場B: 15. 6	
				-	0	圃場C:13.3	
2 2 2 2			0.18 lb ai/acre	-	<u>0</u>	圃場D:11.3	
からしな (茎葉)	8	18.3%フロアブル	(202 g ai/ha)	<u>2</u>	<u>0</u>		
(圣栗)			茎葉散布		0	圃場E:14.4	
					0	圃場F:19.9	
					0 1 2 7 2	圃場G:0.868	
					<u>0</u> , 1, 3, 7, 9	圃場H:5.54 (2回,3目)	
			0.1115 lb ai/acre		<u>0</u>	圃場A:1.432	
ブロッコリー	4	18.3%フロアブル	0.1115 15 a1/acre (125 g ai/ha)	<u>3</u>	<u>0</u>	圃場B:0.668	
7 1 7 2 7 -			茎葉散布		<u>0</u>	圃場C:0.417	
					<u>0</u> , 4, 7, 10, 14	圃場D:0.948	

ピジフルメトフェンの作物残留試験一覧表 (米国)

## <i>11-41</i> .	2017年4 () () () () () ()								
農作物	試験 圃場数	剤型	使用量・使用方法	回数	経過日数	残留濃度(mg/kg) ^{注)}			
					<u>0</u>	圃場A:9.19			
					<u>0</u>	圃場B:12.5			
					<u>0</u>	圃場C:15.6			
ほうれんそう	8	18.3%フロアブル	0.18 lb ai/acre (202 g ai/ha)	2	<u>0</u>	圃場D:13.5			
(茎葉)	0	10.3%	文章 (202 g a1/11a) 茎葉散布	4	<u>0</u>	圃場E:14.4			
					<u>0</u>	圃場F:12.4			
					<u>0</u>	圃場G:7.53			
					<u>0</u>	圃場H:9.72			
					<u>0</u>	圃場A:0.081			
					<u>0</u>	圃場B:0.366			
ピーマン	C	10 00/ フィフディ	0.11 lb ai/acre	0	<u>0</u>	圃場C:0.168			
(果実)	6	18.3%フロアブル	(123 g ai/ha) 茎葉散布	2	0	圃場D:0.062			
			1 X X X X		0	圃場E:0.262			
					<u>0,</u> 3, 7, 11, 14	圃場F:0.076			
			0.11 lb ai/acre		0	圃場A:0.088			
とうがらし	3	18.3%フロアブル	(123 g ai/ha)	2	0	圃場B:0.136			
(果実)			茎葉散布		0	圃場C:0.257			
					<u>0</u>	圃場A:0.141			
					<u> </u>	圃場B:0.112			
					0	圃場C:0.109			
			0.11 lb ai/acre		<u> </u>	圃場D:0.159			
きゅうり					<u>0</u>	圃場E:0.114			
(果実)	10	18.3%フロアブル	(123 g ai/ha) 茎葉散布	2	0	圃場F:0.264			
			全果取印		<u>0,</u> 1, 3, 6, 9	圃場G:0.117			
					0	圃場H:0.111			
				<u>0</u>	圃場I:0.230				
					0	圃場J:0.190			
					<u> </u>	圃場A:0.013			
								14	圃場B:0.024
いんげん				14	圃場C:0.142				
(未成熟さや)	6		<u>2</u> –	13	圃場D:0.076				
			茎葉散布		0, 7, <u>14</u> , 21, 28	圃場E:0.017			
					14	圃場F: 0. 027			
					14	圃場A:0.011			
えんどう	3	18.3%フロアブル	0.18 lb ai/acre (202 g ai/ha)	<u>2</u>	0, 7, <u>14</u> , 21, 28	圃場B:0.638			
(未成熟さや)	3	10.5/0/ 11/ //	茎葉散布	=	14	圃場C:0.054			
					0	圃場A: 0. 55974			
24 11 .			0.075 lb ai/acre	<u> </u>		圃場B:0. 28222			
タンジェリン (果実)	4	18.3%フロアブル	(84 g ai/ha)	<u>4</u> –	0	圃場C: 0. 24401			
()()()			茎葉散布	_	0	圃場0:0.24401 圃場D:0.17429			
					0				
					0	圃場A:1.38			
			0.134 lb ai/acre		<u>0</u>	圃場B:2.54			
ラズベリー (果実)	6	18.3%フロアブル	(150 g ai/ha)	<u>2</u> –	<u>0</u>	圃場C:1.27			
(水大)			茎葉散布		<u>0</u>	圃場D: 1. 53			
					<u>0</u>	圃場E: 0. 563			
					<u>0</u> , 1, 2, 6, 11	圃場F:0.453(2回,1日)			

ピジフルメトフェンの作物残留試験一覧表 (米国)

# /~ #~	試験		試験条件			
農作物	圃場数	剤型	使用量・使用方法	回数	経過日数	残留濃度(mg/kg) ^{注)}
					<u>0</u>	圃場A:0.6920
					<u>0</u> , 1, 3, 7, 10	圃場B:0.9565
					<u>0</u>	圃場C:0.8635
ブルーベリー (Highbush系)	8	18.3%フロアブル	0.134 lb ai/acre	<u>2</u>	<u>0</u>	圃場D:0.6620
(用Ighbush末) (果実)	0	10.3%/ 4 / / //	(150 g ai/ha) 茎葉散布	4	<u>0</u>	圃場E:0.4050
					<u>0</u>	圃場F:3.550
					<u>0</u>	圃場G:0.6600
					<u>0</u>	圃場H:0.6630
			56 + 120 g ai/ha		<u>0</u>	圃場A:1.15 (#)
	3	18.3%フロアブル	(合計 352 g ai/ha)	2+2	<u>0</u>	圃場B:1.4 (#)
ブルーベリー			茎葉散布		<u>0</u>	圃場C:2.1 (#)
(Lowbush系)					0	圃場A:1.4 (#)
(果実)	4 150 g	18.3%フロアブル +	- 56 + 120 g ai/ha (合計 352 g ai/ha) 茎葉散布	2+2	0	圃場B:1.4 (#)
		フロアブル		212	0	圃場C:1.45 (#)
					0, 1, 3, 6, 10	圃場D:0.72 (4回,0日)(#)
					<u>30</u>	圃場A:0.038
					28	圃場B:0.013
					33	圃場C:0.084
					<i>19, 25</i> , 29, 34, 39	圃場D:<0.01 (2回,29日)
					<u>30</u>	圃場E:0.086
綿実	12	18.3%フロアブル	0.112 lb ai/acre (125 g ai/ha)	2	28	圃場F:0.070
(種子及び綿)	12	10.0/0/ = / / //	茎葉散布	<u> </u>	29	圃場G:0.093
					33	圃場H:0.29
					<i>20, 24</i> , 31, 38, 40	圃場I:0.026 (2回,31日)
					29	圃場J:0.12
					<u>30</u>	圃場K:0.042
					32	圃場L:<0.01
					<i>7, 10,</i> <u>14</u> , 17, 21	圃場A:<0.01
7 7 1			0.09 lb ai/acre		<u>14</u>	圃場B:0.032
アーモンド (外皮を除いた種子)	5	18.3%フロアブル	(101 g ai/ha)	<u>3</u>	<u>14</u>	圃場C:<0.01
			茎葉散布		<u>14</u>	圃場D:<0.01
					<u>14</u>	圃場E:0.027

(#)印で示した作物残留試験成績は、登録又は申請された適用の範囲内で行われていないことを示す。また、適用範囲内ではない試験条件を 斜体で示した。

注) 当該農薬の登録又は申請された適用の範囲内で最も多量に用い、かつ最終使用から収穫までの期間を最短とした場合の作物残留試験(いわゆる最大使用条件下の作物残留試験)を複数の圃場で実施し、それぞれの試験から得られた残留濃度の最大値を示した。

表中、最大使用条件下の作物残留試験条件に、アンダーラインを付しているが、経時的に測定されたデータがある場合において、収穫までの期間が最短の場合にのみ最大残留濃度が得られるとは限らないため、最大使用条件以外で最大残留濃度が得られた場合は、その使用回数及び経過日数について () 内に記載した。

今回、新たに提出された作物残留試験成績に網を付けて示している。

				参考基準値		値	
	基準値	基準値	登録	国際	国/地域		
食品名	室 年 恒 案	現行	有無	基準		準値	作物残留試験成績等
	ppm	ppm		ppm	ŗ	pm	ppm
小麦	0.6	0.6	0	0.4			0.068~0.358(n=6)
大麦	4	4	0	3	4.0	米国	【0.044~2.56(n=21)(米国大麦)】
ライ麦	0.4	0.3	0	0.4	1.0	/NI	Cololl Block Bly()(E)(2)
とうもろこし	0.04	0.02		0.04			
そば	3	0.02		3			
その他の穀類	4	4		3	4.0	米国	【大麦参照】
1 —	0.4						
大豆	0.4	0.4		0.4			
小豆類	0.4	0.4		0.4			
えんどう そら豆	0.4	0.4		0.4			
らっかせい	0.4	0.4		$0.4 \\ 0.05$			
その他の豆類	0.03	0.02		0.05			
	0.4	0.4		0.4			
ばれいしょ	0.1	0.02		0.1			
さといも類(やつがしらを含む。)	0.1			0.1			
かんしょ	0.1			0.1			
やまいも(長いもをいう。)	0.1			0.1			
こんにゃくいも	0.1			0.1			
その他のいも類	0.1			0.1			
アノキ ハ	0.5	l	ITT		0.5	VE	『 ギハァ / 鞆/ニゴ , , ナ) の担名
てんさい	0.5		IT	0.3	0.5	米国	【だいこん類(ラディッシュを含む。)の根参 照】
だいこん類(ラディッシュを含む。)の根	0.5		ΙΤ	0.3	0.5	米国	【0.0130~0.1664(n=5)(米国ラディッシュ(根
だいこん類(ラディッシュを含む。)の葉	0.1						部))】
たいこん類(ファイツシュを占む。)の果かぶ類の根	0.1		IT	0.1	0.5	米国	【だいこん類(ラディッシュを含む。)の根参
							照】
かぶ類の葉	0.1			0.1			
西洋わさび	0.5		IT	0.3	0.5	米国	【だいこん類(ラディッシュを含む。)の根参 照】
クレソン	50		IT	0.1	50	米国	【0.868~28.6(n=8)(米国からしな(茎葉))】
はくさい	3		IT	2	3		【0.417~1.432(n=4)(米国ブロッコリー)】
キャベツ	3		IT	2	3		【はくさい参照】
芽キャベツ	3		IT	2	3		【はくさい参照】
ケール	50		IT	0.1	50		【クレソン参照】
こまつな	50		IT	0.1	50		【クレソン参照】
きょうな	50		IT	0.1	50	米国	【クレソン参照】
チンゲンサイ	50		IT	0.1	50		【クレソン参照】
カリフラワー	3		IT	3			
ブロッコリー	3		IT	3			
その他のあぶらな科野菜	50		IT	3	50	米国	【クレソン参照】
ごぼう	0.5		ΙΤ	0.3	0.5	米国	【だいこん類(ラディッシュを含む。)の根参
サルシフィー	0.5		IT	0.3	0.5	米国	照】 【だいこん類(ラディッシュを含む。)の根参
チコリ	10		IT		10		照】 【0.7629~6.2738(n=17)(米国てんさい(葉
			11		10	小田	部))】
レタス(サラダ菜及びちしゃを含む。)	40	40			40	米国	【ほうれんそう参照】
その他のきく科野菜	15		IT	15			
たまねぎ	0.3		ΙΤ	0.3			
ねぎ(リーキを含む。)	2		IT	1.5			
にんにく	0.3		IT	0.3			
にら	2		IT	1.5			
わけぎ	2		IT	1.5			
その他のゆり科野菜	2		IT	1.5			
	f	ļ					

				参考基準値		店		
食品名	基準値	基準値	登録	国際	国/	/地域	作物残留試験成績等	
Диги	案 ppm	現行 ppm	有無	基準 ppm		準値 ppm	ppm	
にんじん	0.5		IT	0.3	0.5	米国	【だいこん類(ラディッシュを含む。)の根参 照】	
パースニップ	0.5		IT	0.3	0.5	米国	【だいこん類(ラディッシュを含む。)の根参 照】	
セロリ	15	15		15		, t. I	····- -	
その他のせり科野菜	0.5		IT	0.3	0.5	米国	【だいこん類(ラディッシュを含む。)の根参 照】	
トマト	0.6	0.6		0.5	0.60	米国	【0.062~0.366(n=6)(米国ピーマン)、 0.088,0.136,0.257(米国とうがらし)】	
ピーマン	0.6	0.6		0.5	0.60	米国	【トマト参照】	
なす	0.6	0.6		0.5	0.60	米国	【トマト参照】	
その他のなす科野菜	0.6	0.6		0.5	0.60	米国	【トマト参照】	
きゅうり(ガーキンを含む。)	0.5	0.5		0.4	0.50		【0.109~0.264(n=10)(米国きゅうり)】	
かぼちゃ(スカッシュを含む。)	0.5	0.5		0.4	0.50		【きゅうり(ガーキンを含む。)参照】	
すいか(果皮を含む。)	0.5		IT	0.4	0.50		【きゅうり(ガーキンを含む。)参照】	
メロン類果実(果皮を含む。)	0.5	0.5		0.4	0.50		【きゅうり(ガーキンを含む。)参照】	
まくわうり(果皮を含む。)	0.5	0.5		0.4	0.50	米国	【きゅうり(ガーキンを含む。)参照】	
その他のうり科野菜	0.4			0.4				
ほうれんそう	40	40			40		【7.53~15.6(n=8)(米国ほうれんそう)】	
オクラ	0.6	0.6		0.02	0.60	米国	【トマト参照】	
未成熟えんどう	2		IT	1.5			Fo and a series associated \$ 1, 1977 (1, 1979 (1,	
未成熟いんげん	1		IT	0.7	1	米国	【0.011,0.054,0.638(米国えんどう(未成熟さや))、0.013~0.142(n=6)(いんげん(未成熟さや))】	
えだまめ	1		IT	0.7	1	米国	【未成熟いんげん参照】	
その他の野菜	15		ΙΤ	15				
みかん(外果皮を含む。)	1		申·IT	0.9	1	米国	【0.17429~0.55974(n=4)(米国タンジェリン)】	
なつみかんの果実全体	1		申·IT	0.9	1	米国	【みかん(外果皮を含む。)参照】	
レモン	1		申·IT	0.9	1		【みかん(外果皮を含む。)参照】	
オレンジ(ネーブルオレンジを含む。)	1		申·IT	0.9	1		【みかん(外果皮を含む。)参照】	
グレープフルーツ	1		申·IT	0.9	1		【みかん(外果皮を含む。)参照】	
ライム	1		申·IT	0.9	1		【みかん(外果皮を含む。)参照】	
その他のかんきつ類果実	1		申・IT	0.9	1	米国	【みかん(外果皮を含む。)参照】	
りんご	0.9		申·IT	0.2			0.15~0.46(n=6)	
日本なし	0.2		IT	0.2				
西洋なしマルメロ	0.2		IT IT	0.2 0.2				
びわ(果梗を除き、果皮及び種子を含む。)	0.2		IT	0.2				
もも(果皮及び種子を含む。)	1		ΙΤ	1				
ネクタリン	1		IT	1				
あんず(アプリコットを含む。)	1		IT	1				
すもも(プルーンを含む。)	0.6		IT	0.6				
うめ ようしょ (エーリー・ナート)	1		IT	1				
おうとう(チェリーを含む。)	2		IT	2				
	•		•				•	

				幺 老甘淮 <i>陆</i>				
	dela Sitta feda	alaba Nella II-la	- A VE	参考基準値				
食品名	基準値 案	基準値 現行	登録 有無	国際 基準		′地域 準値	作物残留試験成績等	
	ppm	ppm	71 711	本中 ppm		+πE pm	ppm	
いちご	1		IT	1				
ラズベリー	5		IT	1	5	米国	【0.453~2.54(n=6)(米国ラズベリー)】	
ブラックベリー	5		IT		5		【ラズベリー参照】	
ブルーベリー	5		IT	5	Ŭ.	7140		
クランベリー	5		IT	1	5	米国	【0.4050~3.550(#)(n=15)(米国ブルーベリー)】	
ハックルベリー	5		IT	5			7.1	
その他のベリー類果実	5		IT	5				
ぶどう	2	2		1 5				
				1.5				
その他の果実	5	2		5				
ひまわりの種子	0.5		IT	0.5				
ごまの種子	0.9		100	0.9				
べにばなの種子	0.5		IT	0.5	0.4	\/ \ =	【(0.01 0.00(1.0)()(图维克)】	
綿実	0.4	0.0	IT	0.02	0.4	米国	【<0.01~0.29(n=12)(米国綿実)】	
なたね その他のオイルシード	0.9	0.9	IT	0.9				
ての1m0/3 4 /レン ート	0.9		IT	0.9				
ぎんなん	0.07		IT	0.05	0.07		【アーモンド参照】	
< 9	0.07		IT	0.05	0.07		【アーモンド参照】	
ペカン	0.07		IT	0.05	:		【アーモンド参照】	
アーモンド	0.07		IT	0.05			【<0.01~0.032(n=5)(米国アーモンド)】	
くるみ	0.07		IT	0.05	0.07		【アーモンド参照】	
その他のナッツ類	0.07		IT	0.05	0.07	米国	【アーモンド参照】	
その他のスパイス	5		申·IT	5				
その他のハーブ	50		IT	15	50	米国	【クレソン参照】	
牛の筋肉	0.1	0.01		0.1				
豚の筋肉	0.1			0.1				
その他の陸棲哺乳類に属する動物の筋肉	0.1	0.01		0.1				
牛の脂肪	0.1	0.03		0.1				
豚の脂肪	0.1			0.1				
その他の陸棲哺乳類に属する動物の脂肪	0.1	0.03		0.1				
牛の肝臓	0.1	0.03		0.1				
豚の肝臓	0.1			0.1				
その他の陸棲哺乳類に属する動物の肝臓	0.1	0.03		0.1				
牛の腎臓	0.1	0.03		0.1				
豚の腎臓	0.1			0.1				
その他の陸棲哺乳類に属する動物の腎臓	0.1	0.03		0.1				
牛の食用部分	0.1	0.03		0.1				
豚の食用部分	0.1			0.1				
その他の陸棲哺乳類に属する動物の食用部分	0.1	0.03		0.1				
乳	0.01	0.03		0.01				
ļ								

				参考基準値		
食品名	基準値 案 ppm	基準値 現行 ppm	登録有無	国際 基準 ppm	国/地域 基準値 ppm	作物残留試験成績等 ppm
鶏の筋肉 その他の家きんの筋肉	0.01 0.01			0.01 0.01		
鶏の脂肪 その他の家きんの脂肪	0.01 0.01			0.01 0.01		
鶏の肝臓 その他の家きんの肝臓	0.01 0.01			0.01 0.01		
鶏の腎臓 その他の家きんの腎臓	0.01 0.01			0.01 0.01		
鶏の食用部分 その他の家きんの食用部分	0.01 0.01			0.01 0.01		
鶏の卵 その他の家きんの卵	0.02 0.02			0.02 0.02		
はちみつ	0.05		***************************************			% 1
小麦はい芽 小麦ふすま とうもろこし粉 とうもろこし油 落花生油 ポテトフレーク	0.07 0.08 0.2 0.5			0.6 1 0.07 0.08 0.15 0.5		※ 2 ※ 2
とうがらし(乾燥させたもの) 野菜(乾燥させたもの) 干しぶどう	7			5 7 4		* 2 * 2

本基準(暫定基準以外の基準)を見直す基準値案については、太枠線で囲んで示した。

「登録有無」の欄に「○」の記載があるものは、国内で農薬等としての使用が認められていることを示している。

「登録有無」の欄に「申」の記載があるものは、国内で農薬の登録申請等の基準値設定依頼がなされたものであることを示している。

「登録有無」の欄に「IT」の記載があるものは、インポートトレランス申請に基づく基準値設定依頼がなされたものであることを示している。

(#)これらの作物残留試験は、登録又は申請の適用の範囲内で試験が行われていない。

「作物残留試験」欄に「推」の記載のあるものは、推定残留濃度であることを示している。

※1)「食品中の農薬の残留基準設定の基本原則について」(令和元年7月30日農薬・動物用医薬品部会(令和5年3月31日一部改訂))

の別添3「はちみつ中の農薬等の基準設定の方法について」に基づき設定。

※2)加工食品である「小麦はい芽」、「小麦ふすま」、「とうがらし(乾燥させたもの)」及び「干しぶどう」について、国際基準が設定されているが、加工係数を用いて原材料中の濃度に換算した値が当該原材料の基準値案を超えないことから、基準値を設定しないこととする。基準値が設定されていない加工食品については、原材料の基準値に基づき加工係数を考慮して適否を判断することとしている。なお、本物質について、JMPRは「小麦はい芽」の加工係数を1.45、「小麦ふすま」の加工係数を2.25、「とうがらし(乾燥させたもの)」の加工係数を10、「干しぶどう」の加工係数を2.54と算出している。

ピジフルメトフェンの推定摂取量 (単位:μg/人/day)

		メトフェン			単位:μg/	i)			
食品名	基準値案 (ppm)	暴露評価に用 いた数値 (ppm)	国民全体 (1歳以上) TMDI	国民全体 (1歳以上) EDI	幼小児 (1~6歳) TMDI	幼小児 (1~6歳) EDI	妊婦 TMDI	妊婦 EDI	高齢者 (65歳以上) TMDI	高齢者 (65歳以上) EDI
小麦	0.6	0.188	35. 9			8. 3	41.4	13.0	29. 9	9. 4
大麦	4	0.599	21. 2	3, 2		2.6	35. 2			
ライ麦 とうもろこし	0.4	0.063 0.030	0.0 0.2	0, 0 0, 1	0.0 0.2	0, 0 0, 2	0.2 0.2	0.0 0.2	0.0 0.2	ŗ
そば	3	0. 23	3. 3	0.3		0.1	5. 4	0.4	3. 3	0.3
その他の穀類	4	0. 599	0.8	0.1	0.4	0. 1	0.4	0.1	1.2	;
大豆	0.4	0. 028	15. 6	1.1	8. 2	0.6	12. 5	0.9	18. 4	
小豆類 えんどう	0.4	0, 028 0, 028	1. 0 0. 0	0, 1 0, 0	0.3 0.0	0.0 0.0	0.3 0.0	0.0 0.0	1. 6 0. 0	γ
<u>そら豆</u>	0.4	0.028	0.3	0.0		0.0	0.3	0.0		
らっかせい	0.05	0.03	0.1	0.0		0.0	0.0	0.0		
その他の豆類	0.4	0. 028 0. 03	0.0	0.0		0.0	0.0	0.0 1.3	0.0	
ばれいしょ さといも類(やつがしらを含む。)	0.1	0.03	3. 8 0. 5	1. 2 0. 2	,,	1. 0 0. 0	4. 2 0. 1	0.0		
かんしょ	0.1	0.03	0.7	0.2	0.6	0.2	1.2	0.4	1.0	
やまいも(長いもをいう。)	0.1	0.03	0.3	0.1		0.0	0. 2	0.1		
こんにゃくいも その他のいも類	0. 1 0. 1	0.03 0.03	0. 1 0. 0	0, 0 0, 0		0, 0 0, 0	0. 1 0. 0	0. 0 0. 0		
その他のいも類 てんさい	0. 5	0. 102	16. 3	3. 3	13. 9	2.8	20. 6	4.2	16. 6	3. 4
だいこん類(ラディッシュを含む。)の根	0. 5	0. 102	16. 5	3. 4	ļ	1.2	10. 3	2. 1		4.6
だいこん類(ラディッシュを含む。)の葉	0.1	0.02	0, 2	0.0	0.1	0.0	0.3	0.1	0.3	0.1
かぶ類の根 かぶ類の葉	0. 5 0. 1	0. 102 0. 02	1. 4 0. 0	0, 3 0, 0		0, 1 0, 0	0. 1 0. 0	0. 0 0. 0		
が金額の条 西洋わさび	0. 5	0. 102	0. 0 0. 1	0.0		0.0	0.0	0.0		
クレソン	50	13. 69	5. 0	1.4	5. 0	1.4	5. 0	1.4	5. 0	1.4
はくさい キャベツ	3	0. 866 0. 866	53. 1 72. 3	15. 3 20. 9		4. 4 10. 0	49. 8 57. 0	14. 4 16. 5	64. 8 71. 4	
芽キャベツ	3	0.866	72. 3 0. 3	20. 9 0. 1	34. 8 0. 3	10. 0 0. 1	57.0 0.3	16. 5 0. 1	71. 4 0. 3	
ケール	50	13. 69	10.0	2.7	5, 0	1.4	5.0	1.4	10.0	2.7
こまつなきょうな	50 50	13, 69 13, 69	250. 0 110. 0	68. 4 30. 1	90. 0 20. 0	24. 6 5. 5	320. 0 70. 0	87. 6 19. 2	320. 0 135. 0	
チンゲンサイ	50	13.69	90.0	24. 6		9.6	90.0	24. 6	95.0	
カリフラワー	3	0.39	1.5	0.2	0.6	0.1	0.3	0.0		0.2
ブロッコリー その他のあぶらな科野菜	3 50	0. 39 13. 69	15. 6 170. 0	2. 0 46. 5		1.3	16. 5 40. 0	2.1	17. 1 240. 0	2. 2 65. 7
ごぼう	0.5	0. 102	2.0	0.4	}	8, 2 0, 2	2.0	11. 0 0. 4	2.3	
サルシフィー	0.5	0. 102	0.1	0. 4		0. 0	0.1	0.0	0.1	0.0
チョリ	10	2. 299	1.0	0.2		0.2	1.0			
レタス (サラダ菜及びちしゃを含む。) その他のきく科野菜	40 15	11. 86 4. 4	384. 0 22. 5	113. 8 6. 6		52. 2 0. 4	456. 0 9. 0	135. 1 2. 6	368. 0 39. 0	
たまねぎ	0.3	0. 07	9. 4	2. 2		1.6	10.6	2. 5	8. 3	
ねぎ (リーキを含む。)	2	0.36	18.8	3. 4	7.4	1.3	13.6	2.4	21. 4	3.9
にんにく にら	0.3	0, 07 0, 36	0. 1 4. 0	0, 0 0, 7		0.0 0.3	0.3 3.6	0. 1 0. 6	0.2 4.2	
わけぎ	2	0.36	0.4	0.1	0.2	0.0	0.2	0.0		
その他のゆり科野菜	2	0. 36	1. 2	0. 2		0.0	0.4	0.1	2.4	
にんじん	0.5	0. 102 0. 102	9.4	1. 9 0. 0		1.4	11. 3	2.3 0.0		
パースニップ セロリ	0. 5 15	0. 102 4. 4	0, 1 18, 0	5. 3		0. 0 2. 6	0. 1 4. 5	1.3	0. 1 18. 0	
その他のせり科野菜	0.5	0.102	0.1	0.0		0.0	0.2	0.0		0.0
トマト	0.6	0.166	19. 3	5. 3	11. 4	3, 2	19. 2	5. 3	22. 0	6.1
ピーマン なす	0.6	0. 166 0. 166	2. 9 7. 2	0. 8 2. 0	<u></u>	0. 4 0. 3	4. 6 6. 0	1. 3 1. 7		
その他のなす科野菜	0.6	0. 166	0.7	0. 2		0.0	0.7	0. 2	0.7	
きゅうり (ガーキンを含む。)	0.5	0. 155	10.4	3. 2	4.8	1.5	7.1	2. 2	12.8	4.0
かぼちゃ (スカッシュを含む。) すいか (果皮を含む。)	0.5 0.5	0. 155	4. 7 3. 8	1.4	,,	0, 6 0, 9	4. 0 7. 2	1.2 2.2	6.5 5.7	!
メロン類果実 (果皮を含む。)	0.5	0, 155 0, 155	3. 8 1. 8	1, 2 0, 5		0.9	1. 2 2. 2	2. Z 0. 7		
まくわうり(果皮を含む。)	0. 5	0. 155	0. 1	0.0	0.1	0.0	0.1	0.0	0.3	0.1
その他のうり科野菜	0.4	0. 12	1.1	0.3		0.1	0.2	0.1		*
ほうれんそう オクラ	0.6	11. 86 0. 166	512. 0 0. 8	151. 7 0. 2		69. 9 0. 2	568. 0 0. 8	168. 3 0. 2		
未成熟えんどう	2	0.100	3. 2	0.2	1.0	0.1	0.4	0.0	4.8	0.3
未成熟いんげん	1	0.111	2.4	0.3		0.1	0.1	0.0		
えだまめ その他の野菜	1 15	0. 111 4. 4	1. 7 201. 0	0. 2 59. 0	1. 0 94. 5	0. 1 27. 7	0. 6 151. 5	0. 1 44. 4	2. 7 211. 5	
ての他の野米 みかん(外果皮を含む。)	10	0.315	201. 0 17. 8	59. 0 5. 6		27. 7 5. 2	0.6	0.2	211. 5 26. 2	62. 0 8. 3
なつみかんの果実全体	1	0.315	1.3	0.4		0.2	4.8	1.5	2.1	
レモン	1	0.315	0, 5	0.2	0.1	0.0	0.2	0.1	0.6	0.2
オレンジ(ネーブルオレンジを含む。) グレープフルーツ	1	0. 315 0. 315	7. 0 4. 2	2. 2 1. 3	14. 6 2. 3	4. 6 0. 7	12. 5 8. 9	3, 9 2, 8	4. 2 3. 5	
ライム	1	0.315	0. 1	0.0	0.1	0.0	0.1	0.0	0.1	0.0
その他のかんきつ類果実	1	0.315	5. 9	1.9	ļ-::;	0.9	2. 5	0.8	9. 5	; ::::::::::::::::::::::::::::::::::::
りんご	0.9	0. 272	21.8	6. 6		8.4	16.9	5. 1 0. 5		8.8
日本なし 西洋なし	0.2	0.06 0.06	1.3 0.1	0, 4 0, 0	::	0, 2 0, 0	1.8 0.0	0. 5 0. 0	1. 6 0. 1	:
マルメロ	0.2	0.06	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
びわ(果梗を除き、果皮及び種子を含む。)	0.2	0.06	0.1	0.0		0.0	0.4	0.1		
<u>もも(果皮及び種子を含む。)</u> ネクタリン	1	0. 21 0. 21	3. 4 0. 1	0. 7 0. 0	<u> </u>	0. 8 0. 0	5. 3 0. 1	1. 1 0. 0		
<i>ホンフラン</i> あんず(アプリコットを含む。)	1	0.21	0.1	0.0		0.0	0.1	0.0		f
すもも(プルーンを含む。)	0.6	0.15	0.7	0.2	0.4	0.1	0.4	0.1	0.7	

ピジフルメトフェンの推定摂取量 (単位: μ g/人/day)

食品名	基準値案 (ppm)	暴露評価に用 いた数値 (ppm)	国民全体 (1歳以上) TMDI	国民全体 (1歳以上) EDI	幼小児 (1~6歳) TMDI	幼小児 (1~6歳) EDI	妊婦 TMDI	妊婦 EDI	高齢者 (65歳以上) TMDI	高齢者 (65歳以上) EDI
うめ	1	0. 21	1.4	0.3		0.1	0.6		1.8	
おうとう(チェリーを含む。)	2	0. 395	0.8	0.2	1.4	0.3	0.2	0.0	0.6	0.1
いちご	1	0. 185	5. 4	1.0	ļi	1.4	5. 2	1.0	<u></u>	
ラズベリー	5	1. 289	0.5	0.1	0, 5	0.1	0. 5		0.5	
ブラックベリー	5	1. 289	0. 5	0.1	0, 5	0.1	0.5	0.1	0.5	
ブルーベリー	5	0. 88	5. 5	1. 0	3, 5	0.6	2. 5	0.4	7.0	-
クランベリー	5	1. 205	0, 5	0. 1	0. 5	0. 1	0. 5		0.5	
ハックルベリー	5	0.88	0. 5	0.1	0.5	0. 1	0.5	0.1	0.5	
その他のベリー類果実	5	0.88	0. 5	0.1	0.5	0.1	1.0	‡	0.5	‡
ぶどう	2	0. 29	17. 4	2. 5	16.4	2.4	40.4	5, 9	18.0	2.6
その他の果実	5	0, 88	6, 0	1. 1	2, 0	0.4	4. 5	0, 8	8, 5	1.5
ひまわりの種子	0.5	0.09	0.1	0.0	0.1	0.0	0.1	0.0	0.1	0.0
ごまの種子	0.9	0.095	0.8	0. 1	0.8	0.1	0.8	0.1	0.7	
べにばなの種子	0.5	0.09	0.1	0. 0	0.1	0.0	0.1	0.0	0.1	
綿実	0.4	0, 074	0, 0	0.0		0.0	0.0			
なたね	0.9	0.095	5, 3	0.6	3. 3	0, 3	4.9			0.4
その他のオイルシード	0.9	0. 095	0.1	0.0	0.1	0.0	0.1	0.0	0.1	0.0
ぎんなん	0.07	0.018	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
< b	0.07	0.018	0.0	0. 0	0.0	0.0	0.0	0.0	0.0	0.0
ペカン	0.07	0.018	0.0	0.0	0.0	0.0	0.0	0.0		
アーモンド	0.07	0.018	0.0	0.0	0.0	0.0	0.0		 -	
くるみ	0.07	0, 018	0.0	0.0		0.0	0.0			4
その他のナッツ類	0.07	0.018	0.0	0.0	0, 0	0.0	0.0	0.0	0.0	0.0
その他のスパイス	5	0.88	0.5	0.1	0.5	0.1	0.5	0.1	1.0	0.2
その他のハーブ	50	13. 69	45.0	12. 3	15. 0	4. 1	5. 0	1.4	70.0	19. 2
陸棲哺乳類の肉類	0. 1	筋肉 0.02 脂肪 0.02	5.8	1.2	4. 3	0.9	6. 4	1.3	4. 1	0.8
陸棲哺乳類の食用部分 (肉類除く)	0.1	0.09	0.1	0.1	0.1	0.1	0. 5	0.4	0.1	0.1
陸棲哺乳類の乳類	0. 01	0.02	2. 6	5. 3	3. 3	6. 6	3. 6	7. 3	2. 2	4. 3
家きんの肉類	0.01	0.02	0.2	0.4	0.2	0.3	0.2	0.5	0.2	0.3
家きんの卵類	0. 02	0.02	0.8	0.8	0. 7	0. 7	1.0	1.0	0.8	0.8
はちみつ	0.05	0.05	0.0	0.0	0.0	0.0	0.1	0.1	0. 1	0. 1
計			2304. 9	645. 7	1029.0	289. 9	2206.7	619.8	2750.0	769. 3
ADI比 (%)			42. 3	11.8	63. 0	17. 7	38. 1	10.7	49. 5	13. 9

TMDI:理論最大1日摂取量(Theoretical Maximum Daily Intake) TMDI試算法:基準値案×各食品の平均摂取量 EDI:推定1日摂取量(Estimated Daily Intake)

EDI試算法:作物残留試験成績の平均値×各食品の平均摂取量

EDILAFACI: TF-0次首本級の機の子均値と存良のグージが収集 ・ 値別の作物残留試験がないことから、暴露評価を行うにあたり基準値(案)の数値を用いた。 国際基準を参照したものについては、JMPRの評価に用いられた残留試験データを用いてESTI試算をした。 「陸棲哺乳類の肉類」については、TMDI計算では、牛・豚・その他の陸棲哺乳類に属する動物の筋肉及び脂肪の摂取量にその範囲の基準値案で最も高い値を乗じた。また、EDI計算では、畜産物中の平均的な残留農薬濃度を用い、摂取量の筋肉及び脂肪の比率をそれぞれ80%及び20%として試算した。

ピジフルメトフェンの推定摂取量(短期):国民全体(1歳以上)

食品名 (基準値設定対象)	食品名 (ESTI推定対象)	基準値案 (ppm)	評価に用いた数 値 (ppm)	ESTI (µg/kg 体重/day)	ESTI/ARfD (%)
大麦	小麦	0.6	0.193	0.3	0
とうもろこし	大麦 スイートコーン	0.04	0.432 0.03	0.4	0
そば	そば	3	0.03	0.3	0
大豆	大豆	0.4	0.028	0.0	0
小豆類	<u> </u>	0.4	0.028	0.0	0
らっかせい	らっかせい	0. 05	0.030	0.0	0
ばれいしょ	ばれいしょ	0. 1	0.084	0.8	0
さといも類 (やつがしらを含む。)	さといも	0. 1	0.084	0. 4	0
かんしょ	かんしょ	0.1	0.084	1.1	0
やまいも(長いもをいう。)	やまいも	0. 1	0.084	0.7	0
だいこん類(ラディッシュを含む。)の根	だいこんの根	0.5	0.166	1.9	1
だいこん類(ラディッシュを含む。)の葉	だいこんの葉	0. 1	0.09	0.7	0
かぶ類の根	かぶの根	0.5	0.166	1. 2	0
かぶ類の葉	かぶの葉	0.1	0.09	0. 2	0
はくさい	はくさい	3	0 1.432	18. 6	6
キャベツ	キャベツ	3	0 1.432	13. 7	5
ケール	ケール	50	0 28.6	229. 7	80
こまつな	こまつな	50	O 28.6	121. 2 95. 4	40
きょうな チンゲンサイ	きょうな	50 50	○ 28.6○ 28.6	212. 3	30 70
カリフラワー	チンゲンサイ カリフラワー	3	28. 61. 5	11. 1	4
ブロッコリー	ブロッコリー	3	0 1.5	9. 0	3
	たかな	50	0 28.6	224. 4	70
その他のあぶらな科野菜	菜花	50	0 28.6	78. 9	30
ごぼう	ごぼう	0. 5	0.166	0.8	0
レタス(サラダ菜及びちしゃを含む。)	レタス類	40	0 15.6	88. 0	30
たまねぎ	たまねぎ	0.3	0.20	1.6	1
ねぎ(リーキを含む。)	ねぎ	2	0 1.39	5. 3	2
にんにく	にんにく	0. 3	0.20	0.1	0
にら	にら	2	0 1.39	1. 9	1
わけぎ	わけぎ	2	0 1.39	2.8	1
その他のゆり科野菜	にんにくの芽	2	0 1.39	2. 5	1
	らっきょう	0.5	0 1.39 0 0.166	1. 5 0. 7	0
にんじん	にんじん にんじんジュース	0. 5	0.140	1. 0	0
セロリ	セロリ	15	0.140	51. 3	20
その他のせり科野菜	せり	0. 5	0.166	0.3	0
トマト	トマト	0.6	0.366	4. 0	1
ピーマン	ピーマン	0.6	0.366	0.9	0
なす	なす	0.6	0.366	2. 4	1
その他のなす科野菜	とうがらし (生)	0.6	0.366	0.6	0
きゅうり (ガーキンを含む。)	ししとう きゅうり	0.6	0.366 0.264	0. 4 1. 7	0
		0. 5	0.264	2.6	1
かぼちゃ (スカッシュを含む。)	ズッキーニ	0. 5	0.264	1. 9	1
すいか (果皮を含む。)	すいか	0.5	0.264	8.7	3
メロン類果実(果皮を含む。)	メロン	0.5	0.264	4. 5	2
その他のうり科野菜	とうがん	0.4	0.27	4.6	2
17.5 do 1.7.5	にがうり	0.4	0.27	2. 2	1
ほうれんそう オクラ	ほうれんそう	40	○ 15.6 ○ 0.366	75. 6	30
	オクラ 未成熟えんどう (さや)	0. 6 2	0.366 0.84	0. 5 0. 84	0
未成熟えんどう	未成熟えんどう(豆)	2	0.84	0.84	0
未成熟いんげん	未成熟いんげん	1	0.638	0. 658	0
えだまめ	えだまめ	1	0.638	0.7	0
	ずいき	15	0 9.3	94. 1	30
この40の野技	もやし	15	9.3	21. 3	7
その他の野菜	れんこん	15	9.3	57. 8	20
	そら豆 (生)	15	9.3	27. 3	9

ピジフルメトフェンの推定摂取量(短期):国民全体(1歳以上)

食品名 (基準値設定対象)	食品名 (ESTI推定対象)	基準値案 (ppm)	評価に用いた数 値 (ppm)	ESTI (µg/kg 体重/day)	ESTI/ARfD (%)
みかん(外果皮を含む。)	みかん	1	0.560	5. 2	2
なつみかんの果実全体	なつみかん	1	0.560	7.0	2
レモン	レモン	1	0.560	1.2	0
オレンジ (ネーブルオレンジを含む。)	オレンジ	1	0.560	5. 3	2
	オレンジ果汁	1	0. 263	2.6	1
グレープフルーツ	グレープフルーツ	1	0.560	9.6	3
	きんかん	1	0.560	1. 3	0
その他のかんきつ類果実	ぽんかん	1	0.560	5. 9	2
[CV] [V] N N O O M A A A A A A A A A	ゆず	1	0.560	0.9	0
	すだち	1	0.560	0.9	0
りんご	りんご	0. 9	0.46	6.6	2
7700	りんご果汁	0.9	0.26	2.8	1
日本なし	日本なし	0.2	0.13	2.0	1
西洋なし	西洋なし	0.2	0.13	1.8	1
びわ (果梗を除き、果皮及び種子を含む。)	びわ	0. 2	0.13	0.9	0
もも (果皮及び種子を含む。)	5.5	1	0.8	10.8	4
すもも (プルーンを含む。)	プルーン	0.6	0.37	2. 2	1
うめ	うめ	1	0.8	1. 1	0
おうとう (チェリーを含む。)	おうとう	2	O 1.7	4. 2	1
いちご	いちご	1	0.62	2. 4	1
ブルーベリー	ブルーベリー	5	3.9	5.6	2
ぶどう	ぶどう	2	0.85	11. 4	4
その他の果実	いちじく	5	O 3.9	29. 9	10
ごまの種子	ごまの種子	0.9	0.0945	0.0	0
ぎんなん	ぎんなん	0.07	0.01	0.0	0
< 9	< b	0.07	0.01	0.0	0
アーモンド	アーモンド	0.07	0.01	0.0	0
くるみ	くるみ	0.07	0.01	0.0	0
はちみつ	はちみつ	0.05	0.05	0.0	0

ESTI: 短期推定摂取量 (Estimated Short-Term Intake)

ESTI/ARfD(%)の値は、有効数字1桁(値が100を超える場合は有効数字2桁)とし四捨五入して算出した。

国際基準を参照したものについては、 ${\tt JMPR}$ の評価に用いられた残留試験データを用いて ${\tt ESTI}$ 試算をした。

○を付していない食品については基準値案を使用した。

〇:作物残留試験における最高残留濃度(HR)又は中央値(STMR)を用いて短期摂取量を推計した。

ピジフルメトフェンの推定摂取量(短期):幼小児(1~6歳)

食品名 (基準値設定対象)	食品名 (ESTI推定対象)	基準値案 (ppm)	評価に用いた 数値 (ppm)	ESTI (µg/kg 体重 /day)	ESTI/ARfD (%)
小麦	小麦	0.6	0. 193	0.6	0
大麦	大麦	4	0.432	0.3	0
とうもろこし	スイートコーン	0.04	0.03	0.7	0
大豆	大豆	0.4	0.028	0.0	0
らっかせい	らっかせい	0.05	0.030	0.0	0
ばれいしょ	ばれいしょ	0.1	0.084	1.9	1
さといも類(やつがしらを含む。)	さといも	0.1	0.084	1.1	0
かんしょ	かんしょ	0.1	0.084	2. 1	1
やまいも(長いもをいう。)	やまいも	0.1	0.084	1.1	0
だいこん類(ラディッシュを含む。)の根	だいこんの根	0.5	0.166	3.6	1
はくさい	はくさい	3	0 1.432	22.4	7
キャベツ	キャベツ	3	0 1.432	22.4	7
こまつな	こまつな	50	O 28.6	254. 1	80
ブロッコリー	ブロッコリー	3	0 1.5	21.6	7
ごぼう	ごぼう	0.5	0.166	1.1	0
レタス(サラダ菜及びちしゃを含む。)	レタス類	40	0 15.6	153. 3	50
たまねぎ	たまねぎ	0.3	0.2	3.5	1
ねぎ (リーキを含む。)	ねぎ	2	0 1.39	9.0	3
にんにく	にんにく	0.3	0.2	0.1	0
11.6	にら	2	0 1.39	2.9	1
にんじん	にんじん	0.5	0.166	1. 7	1
トマト	トマト	0.6	0.366	9. 9	3
ピーマン	ピーマン	0.6	0.366	2.4	1
なす	なす	0.6	0.366	5. 7	2
きゅうり (ガーキンを含む。)	きゅうり	0.5	0.264	3.9	1
かぼちゃ (スカッシュを含む。)	かぼちゃ	0.5	0.264	4. 2	1
すいか(果皮を含む。)	すいか	0.5	0. 264	22. 9	8
メロン類果実(果皮を含む。)	メロン	0.5	0. 264	7.7	3
ほうれんそう	ほうれんそう	40	0 15.6	175. 2	60
オクラ	オクラ	0.6	0.366	1.6	1
未成熟えんどう	未成熟えんどう(さや)	2	0.84	1.0	0
	未成熟えんどう(豆)	2	0.84	1.5	1
未成熟いんげん	未成熟いんげん	1	0.638	2.6	1
えだまめ	えだまめ	1	0.638	1.8	1
その他の野菜	もやし	15	9.3	39. 0	10
7)) /H II + 2 A h	れんこん	15	9.3	95.6	30
みかん (外果皮を含む。)	みかん	1	0.560	15. 3	5
オレンジ (ネーブルオレンジを含む。)	オレンジ	1	0.560	15. 1	5
	オレンジ果汁	1	0.263	4.7	2
りんご	りんご	0.9	0.46	14.8	5
	りんご果汁		0.26	8.8	3
日本なし	日本なし	0.2	0.13	3.7	1
もも (果皮及び種子を含む。)	5.4	1	0.8	33.9	10
うめ	うめ	1	0.8	2.7	1
いちご	いちご	1	0.62	6.7	2
ぶどう	ぶどう	2	0.85	26.0	9
ごまの種子	ごまの種子	0.9	0.0945	0.0	0
はちみつ	はちみつ	0.05	0.05	0.1	0

ESTI: 短期推定摂取量 (Estimated Short-Term Intake)

ESTI/ARfD(%)の値は、有効数字1桁(値が100を超える場合は有効数字2桁)とし四捨五入して算出した。

〇:作物残留試験における最高残留濃度(HR)又は中央値(STMR)を用いて短期摂取量を推計した。

国際基準を参照したものについては、JMPRの評価に用いられた残留試験データを用いてESTI試算をした。

○を付していない食品については基準値案を使用した。

これまでの経緯

平成30年11月22日	農林水産省から厚生労働省へ農薬登録申請に係る連絡及び基準
	值設定依頼(新規:小麦)

平成30年12月 4日 インポートトレランス申請(小麦、大麦等)

平成31年 4月17日 厚生労働大臣から食品安全委員会委員長あてに残留基準設定に 係る食品健康影響評価について要請

令和 元年11月12日 食品安全委員会委員長から厚生労働大臣あてに食品健康影響評 価について通知

令和 2年 4月 3日 薬事・食品衛生審議会食品衛生分科会農薬・動物用医薬品部会

令和 2年11月16日 残留農薬基準告示

令和 4年 4月28日 インポートトレランス申請(てんさい、こまつな等)

令和 4年 7月 1日 農林水産省から厚生労働省へ農薬登録申請に係る連絡及び基準 値設定依頼(新規:かんきつ及びりんご)

令和 4年10月19日 厚生労働大臣から食品安全委員会委員長あてに残留基準設定に 係る食品健康影響評価について要請

令和 5年 1月19日 食品安全委員会委員長から厚生労働大臣あてに食品健康影響評 価について通知

令和 5年 3月 7日 薬事・食品衛生審議会へ諮問

令和 5年 7月11日 薬事・食品衛生審議会食品衛生分科会農薬・動物用医薬品部会

● 薬事・食品衛生審議会食品衛生分科会農薬・動物用医薬品部会

[委員]

◎穐山 浩 学校法人星薬科大学薬学部薬品分析化学研究室教授

井之上 浩一 学校法人立命館立命館大学薬学部薬学科臨床分析化学研究室教授

大山 和俊 一般財団法人残留農薬研究所業務執行理事・化学部長

〇折戸 謙介 学校法人麻布獣医学園理事(兼)麻布大学獣医学部生理学教授

加藤 くみ子 学校法人北里研究所北里大学薬学部分析化学教室教授

神田 真軌 東京都健康安全研究センター食品化学部副参事研究員

魏 民 公立大学法人大阪大阪公立大学大学院医学研究科

環境リスク評価学准教授

佐藤 洋 国立大学法人岩手大学農学部共同獣医学科比較薬理毒性学研究室教授

佐野 元彦 国立大学法人東京海洋大学学術研究院海洋生物資源学部門教授

須恵 雅之 学校法人東京農業大学応用生物科学部農芸化学科

生物有機化学研究室教授

瀧本 秀美 国立研究開発法人医薬基盤・健康・栄養研究所理事

(兼) 国立健康・栄養研究所所長

田口 貴章 国立医薬品食品衛生研究所食品部第一室長

中島 美紀 国立大学法人金沢大学ナノ生命科学研究所

薬物代謝安全性学研究室教授

根本 了 国立医薬品食品衛生研究所食品部主任研究官

野田 隆志 一般社団法人日本植物防疫協会信頼性保証室付技術顧問

二村 睦子 日本生活協同組合連合会常務理事

(◎:部会長、○:部会長代理)

答申 (案)

ピジフルメトフェン 今回残留基準値を設定する「ピジフルメトフェン」の規制対象は、ピジフルメトフェンのみとする。

食品名	残留基準値
	ppm
	0.6
大麦	4
ライ麦	0. 4
とうもろこし	0.04
そば	3
その他の穀類 ^{注1)}	4
大豆	0. 4
小豆類 ^{注2)}	0.4
えんどう	0.4
そら豆	0.4
らっかせい	0.05
その他の豆類 ^{注3)}	0. 4
ばれいしょ	0. 1
さといも類 (やつがしらを含む。)	0.1
かんしょ	0. 1
やまいも(長いもをいう。)	0. 1
こんにゃくいも	0. 1
その他のいも類 ^{注4)}	0. 1
てんさい	0. 5
だいこん類(ラディッシュを含む。)の根	0. 5
だいこん類(ラディッシュを含む。)の葉	0. 1
かぶ類の根	0. 5
かぶ類の葉	0. 1
西洋わさび	0.5
クレソン	50 3
はくさいキャベツ	3
芽キャベツ	3
ケール	50
こまつな	50
きょうな	50
チンゲンサイ	50
カリフラワー	3
ブロッコリー	3
その他のあぶらな科野菜 ^{注5)}	50
ごぼう	0.5
サルシフィー	0. 5
チコリ	10
レタス(サラダ菜及びちしゃを含む。)	40
その他のきく科野菜 ^{注6)}	15

食品名	残留基準値
	ppm
たまねぎ	0.3
ねぎ(リーキを含む。)	2
にんにく にら	0. 3 2
わけぎ	2
その他のゆり科野菜 ^{注7)}	2
にんじん	0. 5
パースニップ	0. 5
セロリ	15 0. 5
その他のせり科野菜 ^{注8)}	
トマトピーマン	0. 6 0. 6
なす	0.6
その他のなす科野菜 ^{注9)}	0.6
きゅうり(ガーキンを含む。)	0. 5
かぼちゃ(スカッシュを含む。)	0. 5
すいか(果皮を含む。)	0.5
メロン類果実(果皮を含む。) まくわうり(果皮を含む。)	0. 5 0. 5
その他のうり科野菜 ^{注10)}	0. 4
ほうれんそう	40
オクラ	0.6
未成熟えんどう	2
未成熟いんげん えだまめ	1 1
その他の野菜 ^{注11)}	15
	10
みかん (外果皮を含む。) なつみかんの果実全体	1
レモン	1
オレンジ (ネーブルオレンジを含む。)	1
グレープフルーツ	1
ライム その他のかんきつ類果実 ^{注12)}	1 1
	0.9
りんご 日本なし	0. 9
西洋なし	0. 2
マルメロ	0.2
びわ(果梗を除き、果皮及び種子を含む。)	0.2
もも(果皮及び種子を含む。)	1
ネクタリン あんず(アプリコットを含む。)	1 1
すもも(プルーンを含む。)	0.6
うめ	1
おうとう(チェリーを含む。)	2

食品名	残留基準値
	ppm
いちご	1
ラズベリー	5
ブラックベリー	5
ブルーベリー	5
クランベリー	5
ハックルベリー	5
その他のベリー類果実 ^{注13)}	5
ぶどう	2
その他の果実 ^{注14)}	5
ひまわりの種子	0.5
ごまの種子	0. 9
べにばなの種子	0. 5
綿実	0.4
なたね	0.9
その他のオイルシード ^{注15)}	0.9
ぎんなん	0.07
< b	0.07
ペカン	0. 07
アーモンド	0. 07 0. 07
くるみ スの(hのよ w x 注16)	0.07
その他のナッツ類 ^{注16)}	5
その他のスパイス ^{注17)}	
その他のハーブ ^{注18)}	50
牛の筋肉	0. 1
豚の筋肉	0. 1
その他の陸棲哺乳類に属する動物 ^{注19)} の筋肉	0. 1
牛の脂肪	0. 1
豚の脂肪	0. 1
その他の陸棲哺乳類に属する動物の脂肪	0. 1
牛の肝臓	0. 1
豚の肝臓	0. 1
その他の陸棲哺乳類に属する動物の肝臓	0. 1
牛の腎臓	0. 1
豚の腎臓	0.1
その他の陸棲哺乳類に属する動物の腎臓	0. 1
牛の食用部分 ^{注20)}	0.1
豚の食用部分	0.1
その他の陸棲哺乳類に属する動物の食用部分	0. 1
乳	0.01

残留基準値 ppm
0. 01 0. 01
0. 02 0. 02
0.05
0. 07 0. 08 0. 2 0. 5

- 注1) 「その他の穀類」とは、穀類のうち、米(玄米をいう。)、小麦、大麦、ライ麦、とうもろこし及びそば以外のものをいう。
- 注2) 「小豆類」には、いんげん、ささげ、サルタニ豆、サルタピア豆、バター豆、ペギア豆、ホワイト豆、ライマ豆及びレンズ豆を含む。
- 注3) 「その他の豆類」とは、豆類のうち、大豆、小豆類、えんどう、そら豆、らっかせい及びスパイス以外のものをいう。
- 注4) 「その他のいも類」とは、いも類のうち、ばれいしょ、さといも類(やつがしらを含む。)、かんしょ、やまいも(長いもをいう。)及びこんにゃくいも以外のものをいう。
- 注5) 「その他のあぶらな科野菜」とは、あぶらな科野菜のうち、だいこん類(ラディッシュを含む。)の根、だいこん類(ラディッシュを含む。)の葉、かぶ類の根、かぶ類の葉、西洋わさび、クレソン、はくさい、キャベツ、芽キャベツ、ケール、こまつな、きょうな、チンゲンサイ、カリフラワー、ブロッコリー及びハーブ以外のものをいう。
- 注6) 「その他のきく科野菜」とは、きく科野菜のうち、ごぼう、サルシフィー、アーティチョーク、チコリ、エンダイブ、しゅんぎく、レタス(サラダ菜及びちしゃを含む。)及びハーブ以外のものをいう。
- 注7) 「その他のゆり科野菜」とは、ゆり科野菜のうち、たまねぎ、ねぎ(リーキを含む。)、にんにく、にら、アスパラガス、わけぎ及びハーブ以外のものをいう。
- 注8) 「その他のせり科野菜」とは、せり科野菜のうち、にんじん、パースニップ、パセリ、セロリ、みつば、スパイス及びハーブ以外のものをいう。
- 注9) 「その他のなす科野菜」とは、なす科野菜のうち、トマト、ピーマン及びなす以外のものをいう。
- 注10) 「その他のうり科野菜」とは、うり科野菜のうち、きゅうり(ガーキンを含む。)、かぼちゃ(スカッシュを含む。)、しろうり、すいか、メロン類果実及びまくわうり以外のものをいう。
- 注11) 「その他の野菜」とは、野菜のうち、いも類、てんさい、さとうきび、あぶらな科野菜、きく科野菜、ゆり科野菜、せり科野菜、なす科野菜、うり科野菜、ほうれんそう、たけのこ、オクラ、しょうが、未成熟えんどう、未成熟いんげん、えだまめ、きのこ類、スパイス及びハーブ以外のものをいう。
- 注12) 「その他のかんきつ類果実」とは、かんきつ類果実のうち、みかん、なつみかん、なつみかんの外果皮、なつみかんの果実全体、レモン、オレンジ(ネーブルオレンジを含む。)、グレープフルーツ、ライム及びスパイス以外のものをいう。
- 注13) 「その他のベリー類果実」とは、ベリー類果実のうち、いちご、ラズベリー、ブラックベリー、ブルーベリー、クランベリー及びハックルベリー以外のものをいう。
- 注14) 「その他の果実」とは、果実のうち、かんきつ類果実、りんご、日本なし、西洋なし、マルメロ、びわ、もも、ネクタリン、あんず(アプリコットを含む。)、すもも(プルーンを含む。)、うめ、おうとう(チェリーを含む。)、ベリー類果実、ぶどう、かき、バナナ、キウィー、パパイヤ、アボカド、パイナップル、グアバ、マンゴー、パッションフルーツ、なつめやし及びスパイス以外のものをいう。
- 注15) 「その他のオイルシード」とは、オイルシードのうち、ひまわりの種子、ごまの種子、べにばなの種子、綿実、なたね及びスパイス以外のものをいう。
- 注16) 「その他のナッツ類」とは、ナッツ類のうち、ぎんなん、くり、ペカン、アーモンド及びくるみ以外のものをいう。
- 注17) 「その他のスパイス」とは、スパイスのうち、西洋わさび、わさびの根茎、にんにく、とうがらし、パプリカ、しょうが、レモンの果皮、オレンジ(ネーブルオレンジを含む。)の果皮、ゆずの果皮及びごまの種子以外のものをいう。
- 注18) 「その他のハーブ」とは、ハーブのうち、クレソン、にら、パセリの茎、パセリの葉、セロリの茎及びセロリの葉以外のものをいう。
- 注19) 「その他の陸棲哺乳類に属する動物」とは、陸棲哺乳類に属する動物のうち、牛及び豚以外のものをいう。
- 注20) 「食用部分」とは、食用に供される部分のうち、筋肉、脂肪、肝臓及び腎臓以外の部分をいう。
- 注21) 「その他の家きん」とは、家きんのうち、鶏以外のものをいう。

府 食 第 4 号 令和5年1月19日

厚生労働大臣 加藤 勝信 殿

食品安全委員会 委員長 山本 茂貴

食品健康影響評価の結果の通知について

令和4年10月19日付け厚生労働省発生食1019第8号をもって厚生労働大臣から食品安全委員会に意見を求められたピジフルメトフェンに係る食品健康影響評価の結果は下記のとおりですので、食品安全基本法(平成15年法律第48号)第23条第2項の規定に基づき通知します。

なお、食品健康影響評価の詳細は別添のとおりです。

記

ピジフルメトフェンの許容一日摂取量を 0.099 mg/kg 体重/日、急性参照用量を 0.3 mg/kg 体重と設定する。

農薬評価書

ピジフルメトフェン (第2版)

令和5年(2023年)1月 食品安全委員会

目 次

		頁
0	審議の経緯	4
0	食品安全委員会委員名簿	4
0	食品安全委員会農薬専門調査会専門委員名簿	5
0	要 約	7
Ι.	評価対象農薬の概要	8
1	Ⅰ. 用途	8
2	2. 有効成分の一般名	8
3	3. 化学名	8
4	1. 分子式	8
5	5. 分子量	8
6	5. 構造式	8
7	7. 物理的化学的性状	9
8	3. 開発の経緯	9
Ⅱ.	安全性に係る試験の概要	10
1	I. 土壌中動態試験	10
	(1)好気的土壌中動態試験	10
	(2)好気的/嫌気的湛水土壌中動態試験	10
	(3)土壌表面光分解試験	11
	(4)土壌吸脱着試験	11
2	2. 水中動態試験	11
	(1)加水分解試験	11
	(2)水中光分解試験(緩衝液及び自然水)	12
	3. 土壌残留試験	
4	1.植物、家畜等における代謝及び残留試験	
	(1)植物代謝試験	12
	(2)作物残留試験	15
	(3)後作物残留試験	15
	(4)家畜代謝試験	16
	(5)畜産物残留試験	19
	(6)推定摂取量	20
5	5. 動物体内動態試験	20
	(1)ラット①	20
	(2) ラット②	28

	(3) マウス①	30
	(4) マウス②	32
	(5)ウサギ	34
	(6) 肝ミクロソームによる代謝 (<i>in vitro</i>)	35
	6. 急性毒性試験等	36
	(1) 急性毒性試験(経口投与)	36
	(2)一般薬理試験	36
	7. 亜急性毒性試験	38
	(1)28 日間亜急性毒性試験(ラット)	38
	(2)90 日間亜急性毒性試験(ラット)	39
	(3)90日間亜急性毒性試験(マウス)	41
	(4) 90 日間亜急性毒性試験(イヌ)	42
	8. 慢性毒性試験及び発がん性試験	43
	(1)1年間慢性毒性試験(イヌ)	43
	(2)2年間慢性毒性/発がん性併合試験(ラット)	43
	(3)80 週間発がん性試験(マウス)	45
	9. 神経毒性試験	46
	(1)急性神経毒性試験(ラット)①	46
	(2)急性神経毒性試験(ラット)②	47
	1 O. 生殖発生毒性試験	47
	(1)2世代繁殖試験(ラット)	47
	(2)発生毒性試験(ラット)	48
	(3)発生毒性試験(ウサギ)	49
	1 1. 遺伝毒性試験	49
	12. 経皮投与、吸入ばく露等試験	50
	(1)急性毒性試験(経皮投与及び吸入ばく露)	50
	(2)眼・皮膚に対する刺激性及び皮膚感作性試験	51
	(3) 28 日間亜急性経皮毒性試験(ラット)	51
	13. その他の試験	51
	(1)マウスを用いた発がん性作用機序検討試験	51
	(2)マウス培養肝細胞を用いた発がん性作用機序検討試験	52
	(3)ヒト培養肝細胞を用いた発がん性作用機序検討試験	53
	(4)ヒト、マウス及びラット CAR3 を用いたレポーターアッセイ	54
	(5)マウスにおける肝薬物代謝酵素誘導試験	54
	(6) 肝ミクロソーム UDPGT への影響に関する試験(ラット)	56
	(7)甲状腺ペルオキシダーゼ活性への影響に関する試験(ラット)	56
ш	安全性に係る試験の概要(代謝物)	57

1. 急性毒性試験等	57
(1) 急性毒性試験(経口投与、代謝物 F 及び G)	57
2. 亜急性毒性試験(代謝物 F、G 及び H)	57
(1)28 日間亜急性毒性試験(ラット、代謝物 F)	57
(2)28 日間亜急性毒性試験(ラット、代謝物 G)	58
(3)28 日間亜急性毒性試験(ラット、代謝物 H)	58
(4)90 日間亜急性毒性試験(ラット、代謝物 G)	59
3. 生殖発生毒性試験(代謝物 G)	60
(1)発生毒性試験(ウサギ、代謝物 G)	60
4. 遺伝毒性試験(代謝物 F、G 及び H)	60
Ⅳ. 食品健康影響評価	62
• 別紙 1 : 代謝物/分解物略称	70
・別紙2:検査値等略称	72
·別紙3:作物残留試験成績(国内)	74
·別紙4:作物残留試験成績(海外)	78
·別紙5:畜産物残留試験成績(泌乳牛)1	00
•別紙 6 : 畜産物残留試験成績(産卵鶏)1	02
・別紙7:推定摂取量1	04
・参照1	05

<審議の経緯>

-第1版関係-

2018年 11月 22日 農林水産省から厚生労働省へ農薬登録申請に係る連絡及び 基準値設定依頼 (新規:小麦)

2018年 12月 4日 インポートトレランス設定の要請(小麦、大麦等)

2019年 4月 17日 厚生労働大臣から残留基準設定に係る食品健康影響評価に ついて要請(厚生労働省発生食 0417 第 11 号)、関係書類 の接受 (参照 1~79)

2019年 4月 23日 第740回食品安全委員会(要請事項説明)

2019年 7月 1日 第83回農薬専門調査会評価第二部会

2019年 8月 9日 第174回農薬専門調査会幹事会

2019年 8月 27日 第754回食品安全委員会(報告)

2019年 8月 28日 から9月26日まで 国民からの意見・情報の募集

2019年 10月 25日 第176回農薬専門調査会幹事会

2019年 11月 6日 農薬専門調査会座長から食品安全委員会委員長へ報告

2019年 11月 12日 第763回食品安全委員会(報告)

(同日付け厚生労働大臣へ通知) (参照84)

2020年 11月 16日 残留農薬基準告示(参照85)、初回農薬登録

一第2版関係一

2022年 4月 28日 インポートトレランス設定の要請(てんさい、こまつな等)

2022 年 7月 1日 農林水産省から厚生労働省へ農薬登録申請に係る連絡及び 基準値設定依頼 (新規:かんきつ及びりんご)

2022 年 10 月 19 日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発生食 1019 第 8 号)、関係書類の接受(参照 $86\sim120$)

2022年 10月 25日 第877回食品安全委員会(要請事項説明)

2022 年 11 月 21 日 第 19 回農薬第三専門調査会

2023年 1月 10日 農薬第三専門調査会座長から食品安全委員会委員長へ報告

2023 年 1月 17 日 第 885 回食品安全委員会(報告)

(1月19日付け厚生労働大臣へ通知)

く食品安全委員会委員名簿>

(2021年6月30日まで) 佐藤 洋 (委員長) 山本茂貴 (委員長代理) (2021年7月1日から)山本茂貴(委員長)浅野 哲(委員長代理 第一順位)

川西 徹川西 徹 (委員長代理 第二順位)吉田 緑脇 昌子 (委員長代理 第三順位)

香西みどり香西みどり堀口逸子松永和紀吉田 充吉田 充

<食品安全委員会農薬専門調査会専門委員名簿>

(2018年4月1日から)

• 幹事会

Ī	西川利	k佳 (座長)	代田眞理子	本間正	充
ž	納屋聖	2人(座長代理)	清家伸康	松本清	司
į	赤池昭	召紀	中島美紀	森田	健
ì	浅野	哲	永田 清	與語靖	洋
,	小野	敦	長野嘉介		

• 評価第一部会

浅野	哲	(座長)	篠原厚子	福井義浩
平塚	明	(座長代理)	清家伸康	藤本成明
堀本政	大夫	(座長代理)	豊田武士	森田 健
赤池昭	3紀		中塚敏夫	吉田 充*

石井雄二

• 評価第二部会

松本清司	(座長)	桒形麻樹子	山手丈至
平林容子	(座長代理)	中島美紀	山本雅子
義澤克彦	(座長代理)	本多一郎	若栗 忍
小澤正吾		増村健一	渡邉栄喜

久野壽也

• 評価第三部会

小野 敦(座長)	佐藤 洋	中山真義
納屋聖人(座長代理)	杉原数美	八田稔久
美谷島克宏(座長代理)	高木篤也	藤井咲子
太田敏博	永田 清	安井 学

腰岡政二

• 評価第四部会

本間正充	(座長)	加藤美紀	玉井郁巳			
長野嘉介	(座長代理)	川口博明	中島裕司			
與語靖洋	(座長代理)	代田眞理子	西川秋佳			
乾 秀之		髙橋祐次	根岸友惠			

*: 2018年6月30日まで

<食品安全委員会農薬第三専門調査会専門委員名簿>

(2022年4月1日から)

平林容子 (座長)小嶋五百合安彦行人義澤克彦 (座長代理)古武弥一郎山手丈至小澤正吾杉山圭一渡邉栄喜久野壽也八田稔久渡辺雅彦

桒形麻樹子

<第 174 回農薬専門調査会幹事会専門参考人名簿>

三枝順三 林 真

<第 176 回農薬専門調査会幹事会専門参考人名簿>

三枝順三 林 真

<第 19 回農薬第三専門調査会専門参考人名簿>

中島美紀(金沢大学新学術創成研究機構ナノ生命科学研究所教授)

Nメトキシ-ピラゾール-カルボキサミド系の殺菌剤である「ピジフルメトフェン」 (CAS No. 1228284-64-7) について、各種資料を用いて食品健康影響評価を実施した。第 2 版の改訂に当たっては、厚生労働省から、作物残留試験(国内:温州みかん、りんご等、海外: てんさい、こまつな等)、動物体内動態試験(肝ミクロソームによる $in\ vitro$ 代謝試験)、28 日間亜急性毒性試験(ラット、代謝物 H)、遺伝毒性試験(代謝物 H)の成績等が新たに提出された。

評価に用いた試験成績は、植物代謝(小麦、トマト等)、作物残留、家畜代謝(ヤギ及びニワトリ)、畜産物残留(ウシ及びニワトリ)、動物体内動態(ラット、マウス、ウサギ等)、亜急性毒性(ラット、マウス及びイヌ)、慢性毒性(イヌ)、慢性毒性/発がん性併合(ラット)、発がん性(マウス)、急性神経毒性(ラット)、2世代繁殖(ラット)、発生毒性(ラット及びウサギ)、遺伝毒性等である。

各種毒性試験結果から、ピジフルメトフェン投与による影響は、主に体重(増加抑制)、肝臓(重量増加、肝細胞肥大等)及び甲状腺(重量増加)に認められた。繁殖能に対する影響、催奇形性及び生体において問題となる遺伝毒性は認められなかった。マウスを用いた発がん性試験において、雄で肝細胞腺腫及び癌の発生頻度増加が認められたが、メカニズム試験及び遺伝毒性試験の結果から、腫瘍発生機序は遺伝毒性メカニズムによるものとは考え難く、評価に当たり閾値を設定することは可能であると考えられた。また、メカニズム試験の結果から、ピジフルメトフェンによる肝細胞

各種試験結果から、農産物及び畜産物中のばく露評価対象物質をピジフルメトフェン(親化合物のみ)と設定した。

腫瘍発生機序のヒトへの外挿性は低いと考えられた。

各試験で得られた無毒性量のうち最小値は、ラットを用いた慢性毒性/発がん性併合試験の 9.9 mg/kg 体重/日であったことから、これを根拠として、安全係数 100 で除した 0.099 mg/kg 体重/日を許容一日摂取量(ADI)と設定した。

また、ピジフルメトフェンの単回経口投与等により生ずる可能性のある毒性影響に対する無毒性量又は最小毒性量のうち最小値は、ラットを用いた発生毒性試験の無毒性量である 30 mg/kg 体重/目であったことから、これを根拠として、安全係数 100 で除した 0.3 mg/kg 体重を急性参照用量(ARfD)と設定した。

I. 評価対象農薬の概要

1. 用途

殺菌剤

2. 有効成分の一般名

和名:ピジフルメトフェン

英名: pydiflumetofen (ISO名)

3. 化学名

IUPAC

和名:3-(ジフルオロメチル)-N-メトキシ-1-メチル-N-[(RS)-1-メチル-2-

(2,4,6-トリクロロフェニル)エチル]-1H-ピラゾール-4-カルボキサミド

英名:3-(difluoromethyl)-N-methoxy-1-methyl-N-[(RS)-1-methyl-2-

(2,4,6-trichlorophenyl)ethyl]-1*H*-pyrazole-4-carboxamide

CAS (No. 1228284-64-7)

和名:3-(ジフルオロメチル)-N-メトキシ-1-メチル-N-[1-メチル-2-

(2.4.6-トリクロロフェニル)エチル]-1H-ピラゾール-4-カルボキサミド

英名: 3-(difluoromethyl)-N-methoxy-1-methyl-N-[1-methyl-2-

(2,4,6-trichlorophenyl)ethyl]-1*H*-pyrazole-4-carboxamide

4. 分子式

 $C_{16}H_{16}Cl_{3}F_{2}N_{3}O_{2}$

5. 分子量

426.7

6. 構造式

7. 物理的化学的性状

融点 : 113℃

沸点 : 約 283℃から熱分解

密度 : $1.55 \text{ g/cm}^3 (20.0 \pm 1.0 \degree)$

蒸気圧 : 1.84×10⁻⁸ Pa (20℃)

5.30×10⁻⁸ Pa (25°C)

外観(色調及び形状)、臭気 : 類白色固体(粉末)、無臭

水溶解度 : 1.5 mg/L (25℃)

オクタノール/水分配係数 : log P_{ow} = 3.8 (25℃)

解離定数:解離せず

8. 開発の経緯

ピジフルメトフェンは、シンジェンタ社により開発された Nメトキシ-ピラゾール-カルボキサミド系殺菌剤で、ミトコンドリア内膜に存在するコハク酸脱水素酵素(複合体 II)からユビキノンへの電子伝達を阻害することにより殺菌作用を示すと考えられている。我が国では 2020 年に初めて農薬登録され、海外では米国、カナダ、欧州等で登録されている。

第2版では、農薬取締法に基づく農薬登録申請(新規:かんきつ及びりんご)及びインポートトレランス設定(てんさい、こまつな等)の要請がなされている。

Ⅱ. 安全性に係る試験の概要

各種動態及び代謝試験 [II.1.2.4及び5] は、ピジフルメトフェンのフェニル基の炭素を 14 C で均一に標識したもの(以下「 $[phe^{-14}C]$ ピジフルメトフェン」という。)及びピラゾリル基 5 位の炭素を 14 C で標識したもの(以下「 $[pyr^{-14}C]$ ピジフルメトフェン」という。)を用いて実施された。放射能濃度及び代謝物濃度は、特に断りがない場合は比放射能(質量放射能)からピジフルメトフェンの濃度(mg/kg 又は $\mu g/g$)に換算した値として示した。

代謝物/分解物略称及び検査値等略称は、別紙1及び2に示されている。

1. 土壤中動態試験1

(1) 好気的土壌中動態試験

[phe- 14 C]ピジフルメトフェン又は[pyr- 14 C]ピジフルメトフェンを用いて、好気的土壌中動態試験が実施された。

試験の概要及び結果については表1に示されている。(参照2、16)

文· 对对中国一部下别的的对称文文的情况						
試験条件	土壌	認められた分解物	推定半減期			
0.33 mg/kg 乾土、 20±2℃、暗所、 最長 365 日間イ ンキュベート	壊土(スイス) a,b、砂質埴壌土(英国) a、シルト質埴壌土(米国) a、砂壌土(英国) a、埴壌土(米国) a	B、 ¹⁴ CO ₂	384~1,750 日			

表 1 好気的土壌中動態試験の概要及び結果

(2) 好気的/嫌気的湛水土壤中動態試験

[phe- 14 C]ピジフルメトフェン又は[pyr- 14 C]ピジフルメトフェンを用いて、好気的/嫌気的湛水十壌中動態試験が実施された。

試験の概要及び結果については表 2 に示されている。(参照 2、17)

試験条件	試験条件		推定半減期
0.33 mg/kg 乾土、20±2℃、 暗所、30 日間空気+湛水状 態で 90 日間窒素通気下イ ンキュベート	壊土(スイス) a,b、砂質 埴壌土(英国) a、シルト 質埴壌土(米国) a、埴壌 土(米国)a	B、 ¹⁴ CO ₂	313~1,970 日

表 2 好気的/嫌気的湛水土壌中動態試験の概要及び結果

a: [phe-14C] ピジフルメトフェン処理、b: [pyr-14C] ピジフルメトフェン処理

a: [phe-14C] ピジフルメトフェン処理、b: [pvr-14C] ピジフルメトフェン処理

¹ 土壌中動態試験における土性は、米国農務省(USDA)分類に基づく。

(3)土壤表面光分解試験

 $[pyr^{-14}C]$ ピジフルメトフェン又は $[phe^{-14}C]$ ピジフルメトフェンを用いて、土壌表面光分解試験が実施された。

試験の概要及び結果については表3に示されている。(参照2、18)

表3 土壌表面光分解試験の概要及び結果

試験条件		土壌	認められた分解物	推定半減期 a
250 g ai/ha、20±2℃、キセノ	乾燥	砂質埴壌土	_	65 日(437 日) ^b 89 日(550 日) ^c
ン光(光強度:50 W/m²)、最長 16 日連続照射	湿潤	(英国)	В	134 日(788 日) ^b 387 日(2,310 日) ^c

a:括弧内は、東京(北緯35度)の春季自然太陽光換算値

b: [phe-14C] ピジフルメトフェン処理

c: [pyr-14C]ピジフルメトフェン処理

(4)土壤吸脱着試験

ピジフルメトフェンを用いて、土壌吸脱着試験が実施された。 試験の概要及び結果については表 4 に示されている。 (参照 2、19、20)

表 4 土壌吸脱着試験の概要及び結果

供試土壌	$ m K^{ads}$	${ m K}^{ m ads}_{ m oc}$	$ m K^{des}$	$ m K^{des}_{oc}$
砂質埴壌土(英国)、シルト質壌土(米国)、壌質砂土(米国)、境 壌土①及び②(米国)、壌土① (スイス)、壌土②(埼玉)		292~2,210	15.4~45.1	1,330~2,820

Kads: Freundlich の吸着係数

Kadsoc: 有機炭素含有率により補正した吸着係数

Kdes: Freundlich の脱着係数

Kdes_{oc}: 有機炭素含有率により補正した脱着係数

2. 水中動態試験

(1) 加水分解試験

[pyr-14C]ピジフルメトフェンを用いて、加水分解試験が実施された。 試験の概要及び結果については表 5 に示されている。(参照 2、21)

表 5 加水分解試験の概要及び結果

試験条件	緩衝液	認められた分解物	推定半減期 a	
0.6 mg/L、50± 0.5℃、暗所、5 日 間インキュベー ト	pH 4 (フタル酸緩衝液)			
	pH 7 (リン酸緩衝液)	_	1年以上	
	pH 9 (ホウ酸緩衝液)			

-:該当なし

a:25℃での半減期が推定された。

(2) 水中光分解試験(緩衝液及び自然水)

[phe- 14 C]ピジフルメトフェン及び[pyr- 14 C]ピジフルメトフェンを用いた、水中光分解試験が実施された。

試験の概要及び結果については表6に示されている。(参照2、22)

表 6 水中光分解試験の概要及び結果

試験条件	供試水 認められた分解物		推定半減期 a
1.0 mg/L、25±2℃、キ セノン光(光強度:25.5	滅菌緩衝液(リン酸緩衝液)	B, G, V, W	89.1 日 (299 日)
~27.1 W/m²)、最長 30 日間照射	滅菌自然水(湖水、英 国、pH 8.1)	D, G, V, W	33.3 日 (113 日)

a:括弧内は、東京(北緯35度)の春季自然太陽光換算値

3. 土壌残留試験

ピジフルメトフェンを分析対象化合物とした土壌残留試験が実施された。 試験の概要及び結果は表7に示されている。(参照2、23)

表7 土壌残留試験の概要及び結果

試験	濃度	土壌	推定半減期
ほ場試験	200 g ai/haª	火山灰土・壌土(茨城)	131 日
(畑地)	(2 回)	沖積土・壌土(高知)	57.3 日

a: 18.3%水和剤

4. 植物、家畜等における代謝及び残留試験

(1)植物代謝試験

①小麦

節間伸張期及び出穂期の春小麦(品種: Paragon)に、水和剤に調製した $[pyr^{-14}C]$ ピジフルメトフェン又は $[phe^{-14}C]$ ピジフルメトフェンを 125 g ai/ha の用量で茎葉散布し、1 回目処理 10 日後に青刈り、2 回目処理 29 日後に干し草、

2回目処理 50 日後に麦わら及び穀粒を採取して、植物代謝試験が実施された。 小麦における放射能分布及び代謝物は表 8 に示されている。

残留放射能は麦わらで最も高く、次いで干し草、青刈り、穀粒の順であった。 各試料における主要成分は未変化のピジフルメトフェンであり、代謝物として B 及び C が認められたが、いずれも 10%TRR 未満であった。ピジフルメトフェンの異性化は認められなかった。(参照 2、13)

		公母 [37]			抽出	画分				
標識体	試料	総残留 放射能	-	ピジフル メトフェン		物B	代謝	物C	抽出	残渣
		(mg/kg)	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg
[phe-14C]	青刈り	0.338	91.0	0.307	1.4	0.005	1.2	0.004	3.5	0.012
ピジフ	干し草	0.977	84.1	0.821	2.4	0.023	3.0	0.029	5.8	0.057
ルメト	麦わら	1.29	83.6	1.08	2.8	0.036	2.4	0.032	4.6	0.059
フェン	穀粒	0.037	81.5	0.030	2.9	0.001	8.3	0.003	9.6	0.004
[pyr-14C]	青刈り	0.465	84.3	0.392	2.7	0.012	2.4	0.011	4.4	0.020
ピジフ	干し草	1.39	70.5	0.981	2.4	0.034	3.6	0.049	5.7	0.079
ルメト	麦わら	1.53	76.4	1.17	3.9	0.059	4.3	0.065	6.1	0.093
フェン	穀粒	0.057	81.6	0.046	2.6	0.001	7.8	0.004	15.2	0.009

表8 小麦における放射能分布及び代謝物

②トマト

トマト (品種: F1 Shirley) に水和剤に調製した[phe- 14 C] ピジフルメトフェン 又は[pyr- 14 C] ピジフルメトフェンを、第一葉期に 20 mg ai/植物の用量で土壌処理し、処理 103 日後に果実を採取し、又は 30%~60%成熟期に 7 日間隔で 2 回、200 g ai/ha の用量で茎葉散布し、2 回目処理 1 及び 14 日後に果実を採取して、植物代謝試験が実施された。

トマト成熟果実における放射能分布及び代謝物は表9に示されている。

果実中の残留放射能濃度は土壌処理で $0.007\sim0.013~mg/kg$ 、茎葉処理で $0.481\sim0.642~mg/kg$ であり、土壌からの根を介したピジフルメトフェンの果実への吸収移行は少なかった。

果実における主要成分は未変化のピジフルメトフェンであり、土壌処理で 4.1%TRR、茎葉処理で 91.7%TRR~96.6%TRR であった。代謝物として B 及び C が認められたが、いずれも 4%TRR 未満であった。ピジフルメトフェンの異性 化は認められなかった。(参照 2、14)

表9 トマト成熟果実における放射能分布及び代謝物

		ムハ マト ピロ			抽出	画分				
標識体	試料		ピジフル メトフェン		代謝	代謝物 B		物C	抽出	残渣
		(mg/kg)	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg
[phe-14C]	土壤処理 103 日後	0.007ª								
ピジフルメト	茎葉処理 1日後	0.521	91.7	0.477	3.6	0.019	1.4	0.007	0.1	0.001
フェン	茎葉処理 14 日後	0.642	92.2	0.592	3.3	0.021	1.6	0.011	0.3	0.002
[pyr-14C]	土壤処理 103 日後	0.013	4.1	0.001	0.4	<0.001	ND	ND	2.6	<0.001
ピジフ ルメト	茎葉処理 1日後	0.481	95.9	0.461	1.8	0.009	0.6	0.003	1.6	0.008
フェン	茎葉処理 14 日後	0.633	96.6	0.611	1.4	0.009	1.0	0.006	0.1	0.001

/:分析せず ND:検出されず

a: 直接燃焼分析による測定値

③なたね

開花盛期のなたね(品種: Ability)に水和剤に調製した[phe-14C]ピジフルメ トフェン又は[pyr-¹⁴C] ピジフルメトフェンを 134 又は 147 g ai/ha の用量で茎葉 散布し、処理62日後に種子及びトラッシュ2を採取して、植物代謝試験が実施さ れた。

なたねにおける放射能分布及び代謝物は表 10 に示されている。

種子及びトラッシュの残留放射能濃度は種子で 0.019~0.020 mg/kg、トラッ シュで $0.061 \sim 0.062$ mg/kg であった。

種子及びトラッシュにおける主要成分は未変化のピジフルメトフェンであり、 30.0%TRR~62.6%TRR であった。代謝物として B 及び C が認められたが、い ずれも 10%TRR 未満であった。ピジフルメトフェンの異性化は認められなかっ た。 (参照 2、15)

²種子を取り出したさや及び茎を合わせたもの。

表 10 なたねにおける放射能分布及び代謝物

標識体	試料		ピジフル メトフェン		抽出液画分 代謝物 B		代謝物 C		抽出残渣	
		(mg/kg)	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg
[phe- ¹⁴ C] ピジフ	種子	0.020	62.6	0.012	ND	ND	2.7	0.001	25.5	0.005
ルメト フェン	トラッ シュ	0.062	50.9	50.9 0.032		0.002	5.1	0.003	6.5	0.004
[pyr- ¹⁴ C] ピジフ	種子	0.019	39.2	0.007	6.1	0.001	ND	ND	28.2	0.005
ルメト フェン	トラッシュ	0.061	30.0	0.018	2.8	0.002	3.3	0.002	13.6	0.008

ND: 検出されず

植物におけるピジフルメトフェンの代謝経路は、 \mathbb{O} ピラゾール環の N-脱メチル化による代謝物 \mathbb{C} の生成、 \mathbb{O} メトキシ基の脱離による代謝物 \mathbb{B} の生成であると考えられた。

(2) 作物残留試験

国内において、小麦、温州みかん等を用いてピジフルメトフェンを分析対象化 合物とした作物残留試験が実施された。

結果は別紙3に示されている。

ピジフルメトフェンの最大残留値は、最終散布 14 日後に収穫された大麦(玄麦)の 1.69 mg/kg であった。

また、海外において、小麦、トウモロコシ等を用いてピジフルメトフェンを分析対象化合物とした作物残留試験が実施された。

結果は別紙4に示されている。

ピジフルメトフェンの最大残留値は、最終散布当日に収穫されたからし菜(茎葉)の 28.6 mg/kg であった。 (参照 2、24~27、87~116)

(3)後作物残留試験

ピジフルメトフェンを土壌表面に 183 g ai/ha の用量で 1 回又は 2 回散布した 後のほ場で栽培した、かぶ又はほうれんそうを用いて、ピジフルメトフェンを分析対象化合物とした後作物残留試験が実施された。

かぶ (根部及び葉部) 及びほうれんそう (茎葉) におけるピジフルメトフェンは、いずれも定量限界 (0.01 mg/kg) 未満であった。 (参照 2、28~31)

(4) 家畜代謝試験

①ヤギ

泌乳ヤギ(ザーネン種、一群雌 1 頭)に $[phe^{-14}C]$ ピジフルメトフェンを 144 mg/kg 飼料又は $[pyr^{-14}C]$ ピジフルメトフェンを 205 mg/kg 飼料の用量で 7 日間カプセル経口投与して、家畜代謝試験が実施された。乳汁は1日2回、尿及び糞は1日1回採取された。臓器及び組織は最終投与11時間後に採取された。

各試料中の残留放射能は表 11 に、放射能分布及び代謝物は表 12 に示されている。

投与放射能は、尿中で 29.9%TAR $\sim 31.5\%$ TAR、糞中で 46.4%TAR $\sim 52.7\%$ TAR 認められた。また、乳汁中では 0.057%TAR $\sim 0.064\%$ TAR 認められ、 残留放射能濃度は最大 $0.151~\mu g/g$ であった。臓器及び組織中の残留放射能濃度は、肝臓で最も高く、最大 $9.37~\mu g/g$ 認められた。

乳汁中の成分として未変化のピジフルメトフェンのほか、10%TRR を超える代謝物として、代謝物 F、H、L 及び N が認められた。臓器及び組織中では、未変化のピジフルメトフェンのほか、10%TRR を超える代謝物として、Ah(脂肪)、F(筋肉)並びに G 及び L(いずれも抱合体を含む。)(腎臓)が認められた。(参照 2、11)

表 11 各試料中の残留放射能 [phe-14C] ピジフルメトフェン [ps

=	[dr.4-6	[phe-14C]ピジ	フルメトフェン	[pyr-14C]ピジフ	フルメトフェン
Ē	試料	%TAR	μg/g	1g/g %TAR .093 0.006 .110 0.009 .106 0.008 .091 0.010 .079 0.008 .087 0.010 .107 0.006 - 0.057 3.97 0.4	
	投与1日	0.010	0.093	0.006	0.076
	投与2日	0.011	0.110	0.009	0.101
	投与3日	0.011	0.106	0.008	0.105
可江	投与4日	0.010	0.091	0.010	0.123
乳汁	投与5日	0.008	0.079	0.008	0.138
	投与6日	0.008	0.087	0.010	0.126
	投与7日	0.006	0.107	0.006	0.151
	合計	0.064	_	0.057	_
J	肝臓	0.4	6.97	0.4	9.37
F	腎臓	< 0.1	1.70	< 0.1	2.28
校 内	腹側部	< 0.1	0.146	< 0.1	0.144
肋肉	投与7日 0.006 0.107 0.006 合計 0.064 — 0.057 肝臓 0.4 6.97 0.4 腎臓 <0.1	< 0.1	0.097		
	大網	<0.1	0.218	<0.1	0.252
脂肪	腎周囲	<0.1	0.252	<0.1	0.354
	皮下	< 0.1	0.188	< 0.1	0.172

注)直接定量による分析値。

-: 算出されず

表 12 各試料における放射能分布及び代謝物(%TRR)

		√Λ ΖΕ ΓΠ		抽出画分	抽
標識体	試料	総残留 放射能 ^a	ピジフ ルメト	代謝物	出残
		(µg/g)	フェン		渣
	乳汁c	0.122	15.7	H(43.2) ^b 、Ah1(2.2)	7.7
[phe- ¹⁴ C] ピジフ	肝臓	6.98	8.2	B(3.4) ^b , Ah1(2.6) ^b , Ah2(1.9), C(1.4) ^b , H(0.5) ^b	49.7
ルメト	腎臓	1.73	0.8	B(7.4) ^b , Ah2(2.9) ^b , H(1.2), Ah1(0.9)	16.6
フェン	筋肉 d	0.102	24.4	H(9.0) ^b , Ah1(3.8), Ah2(1.8)	14.0
	脂肪。	0.221	67.2	Ah (8.6), Ah1(5.3)	1.1
	乳汁 f	0.132	8.7	N(28.7), L(14.2), F(11.0), G(2.6), Ah1(0.7)	6.1
[pyr-14C]	肝臓	8.83	2.0	Ah2(3.0), G(2.9) ^b , Ah1(1.9), B(1.8) ^b , C(0.4)	52.6
ピジフ ルメト	腎臓	2.34	0.5	L(16.6) ^b , G(11.7) ^b , Ah2(2.7) ^b , F(1.5) ^b , N(0.8) ^b , Ah1(0.7)	9.2
フェン	筋肉 d	0.138	13.4	F(17.7), L(4.9), G(3.6), Ah2(1.2), Ah1(1.1), N(0.6)	5.7
	脂肪。	0.240	73.8	Ah (10.2), L(4.3), Ah1(3.3), F(1.0)	2.4

- a: 抽出画分及び抽出残渣の合計
- b: 抱合体を含む値
- 。: 投与開始後 79 時間の試料
- d: 腹側部筋及び腰部筋の混合試料
- e: 大網脂肪、腎周囲脂肪及び皮下脂肪の混合試料
- f: 投与開始後 127 時間の試料

②ニワトリ

産卵鶏(Hyline Brown、一群雌 6 羽)に $[phe^{-14}C]$ ピジフルメトフェンを 56.3 mg/kg 飼料又は $[pyr^{-14}C]$ ピジフルメトフェンを 56.9 mg/kg 飼料の用量で 14 日間カプセル経口投与して、家畜代謝試験が実施された。卵は 1 日 2 回、排泄物は 1 日 1 回採取された。臓器及び組織は最終投与 11 時間後に採取された。

各試料中の残留放射能は表 13 に、放射能分布及び代謝物は表 14 に示されている。

投与放射能は 84.3%TAR \sim 99.1%TAR が排泄物中に認められた。卵中の残留放射能は 0.1%TAR 未満であり、残留放射能濃度は卵白中で最大 $0.092~\mu g/g$ 、卵黄中で最大 $0.359~\mu g/g$ であった。

卵、臓器及び組織中の成分として、未変化のピジフルメトフェンが認められた。 10%TRR を超える代謝物として、F(卵白及び筋肉)、G(卵白)及び H(抱合体を含む。)(卵黄、卵白、筋肉及び脂肪)が認められた。(参照 2、12)

表 13 各試料中の残留放射能

	試料	[phe-14C] ピジ	フルメトフェン	[pyr- ¹⁴ C] ピジフルメトフェン		
		%TAR	μg/g	%TAR	μg/g	
	卵白	<0.1	0.015~0.088 a	<0.1	0.014~0.092 a	
卵黄		<0.1	0.034~0.359 a	<0.1	0.005~0.119 a	
筋	新 胸筋 <0.1		0.019	<0.1	0.019	
肉	脚筋・大腿筋	<0.1	0.032	<0.1	0.022	
	皮膚及び脂肪	<0.1	0.106	<0.1	0.040	
内臟脂肪		<0.1	0.081	<0.1	0.020	
肝臓		<0.1	0.379	< 0.1	0.204	

注) 直接定量による分析値。

表 14 各試料における放射能分布及び代謝物(%TRR)

		総残留		抽出画分	抽出	
標識体	試料	放射能a	ピジフル	代謝物	抽山 残渣	
		$(\mu g/g)$	メトフェン	1 (図172)	7久但.	
	卵黄 c	0.358	3.0	H(67.8) ^b , Ah2(2.3)	13.0	
[phe-14C]	卵白 d	0.053	46.5	H(14.5)b, Ah1(7.1),	2.3	
ピジフル	肝臓	0.404	5.3	Ah2(2.4) ^b , B(1.2) ^b , Ah1(0.7), C(0.2) ^b	48.3	
メトフェン	筋肉e	0.027	8.7	H(48.4)b, Ah1(3.4)	15.8	
	脂肪f	0.101	16.6	H(29.3) _b , Ah1(3.0), Ah2(1.7),	4.3	
	卵黄 g	0.106	11.0	F(7.2)b, Ah2(6.7), G(6.6)b, B(3.9),	18.7	
[14C]	列·英。	0.100	11.0	C(2.5), Ah1(1.3)	10.7	
[pyr- ¹⁴ C] ピジフル	卵白 g	0.052	26.6	F(34.3), G(15.4), Ah1(5.5)	1.2	
メトフェン	肝臓	0.210	0.5	B(3.3) ^b , Ah1(3.2), Ah2(0.9) ^b	47.5	
7 1 7 1 2	筋肉e	0.021	4.7	F(46.3), Ah1(1.6), Ah2(1.1)	9.9	
	脂肪f	0.032	30.6	F(9.6), Ah1(4.1), G(3.1), Ah2(2.6)	8.4	

- a:抽出画分及び抽出残渣の合計
- b: 抱合体を含む値
- ∘: 投与 10~13 日に採取、混合した試料
- d: 投与6~13日に採取、混合した試料
- e: 胸筋及び脚筋・大腿筋の混合試料
- f: 内臓脂肪及び皮膚を含む皮下脂肪の混合試料
- g: 投与7~13日に採取、混合した試料

畜産動物(ヤギ及びニワトリ)におけるピジフルメトフェンの主要代謝経路は、①ベンジル位メチレン基及びフェニル基の水酸化による代謝物 Ah1 及び Ah2 の生成、<math>②メトキシ基の脱離による代謝物 B の生成、<math>③ピラゾール環の N・脱メチル化による代謝物 C の生成、<math>④ベンジル位メチレン基の開裂による代謝物 H、L及び N の生成、<math>⑤アミド結合の開裂による代謝物 F 及び G の生成と、それらに引き続くグルクロン酸及び硫酸抱合と考えられた。

a: 投与期間中に採取された試料の最大値と最小値。

(5) 畜産物残留試験

① ウシ

泌乳牛(エアシャー種又はホルスタイン・フリージアン種、一群雌 3 頭)にピジフルメトフェンを 15、45 及び 150 mg/kg 飼料の用量 3 で 1 日 1 回、28 日間カプセル経口投与して、ピジフルメトフェン並びに代謝物 Ah2、F、H、L 及び N を分析対象化合物とした畜産物残留試験が実施された。

結果は別紙5に示されている。

乳汁中におけるピジフルメトフェン並びに代謝物 H 及び N の最大残留値は、それぞれ 150 mg/kg 飼料投与群における $0.02~\mu$ g/g(ピジフルメトフェン)、 $0.10~\mu$ g/g(代謝物 H)及び $0.01~\mu$ g/g(代謝物 N)であり、代謝物 F はいずれも定量限界 $(0.01~\mu$ g/g)未満であった。 15 mg/kg 飼料投与群では、いずれの分析対象化合物も定量限界 $(0.01~\mu$ g/g)未満であった。無脂肪乳及びクリーム中でのピジフルメトフェン並びに代謝物 H 及び N の最大残留値は、それぞれ 150 mg/kg 飼料投与群における $0.20~\mu$ g/g(ピジフルメトフェン:クリーム)、 $0.09~\mu$ g/g(代謝物 H:無脂肪乳)及び $0.01~\mu$ g/g(代謝物 N:無脂肪乳)であった。代謝物 F はいずれも定量限界 $(0.01~\mu$ g/g)未満であった。 15~mg/kg 飼料投与群における最大残留値は、ピジフルメトフェンで $0.01~\mu$ g/g(クリーム)、代謝物 H で $0.02~\mu$ g/g(クリーム)であり、代謝物 F 及び N はいずれも定量限界 $(0.01~\mu$ g/g)未満であった。

組織におけるピジフルメトフェン並びに代謝物 Ah2、H 及び L の最大残留値は、それぞれ 150 mg/kg 飼料投与群における 0.17 $\mu g/g$ (ピジフルメトフェン:腸間膜脂肪)、0.59 $\mu g/g$ (代謝物 Ah2:肝臓)、0.21 $\mu g/g$ (代謝物 H:腎臓)及び 0.10 $\mu g/g$ (代謝物 L:腎臓)であった。15 mg/kg 飼料投与群における最大残留値は、ピジフルメトフェンで 0.02 $\mu g/g$ (腸間膜脂肪、皮下脂肪及び肝臓)、代謝物 Ah2 で 0.06 $\mu g/g$ (肝臓及び腎臓)、H で 0.01 $\mu g/g$ (腎臓)であり、代謝物 L についてはいずれも定量限界(0.01 $\mu g/g$)未満であった。(参照 2、32)

② ニワトリ

産卵鶏(テトラブラウン、一群雌 10 羽)にピジフルメトフェンを 3、9 及び 30 mg/kg 飼料の用量4で、1 日 1 回、28 日間強制経口投与して、ピジフルメトフェン及び代謝物 H を分析対象化合物とした畜産物残留試験が実施された。

結果は別紙6に示されている。

卵において、ピジフルメトフェン及び代謝物 H の最大残留値は、30 mg/kg 飼料投与群における $0.04 \mu\text{g/g}$ (ピジフルメトフェン:卵白)及び $0.07 \mu\text{g/g}$ (代謝

³ 本試験における用量は作物残留試験から得られた飼料となる作物の残留濃度から予想される最大飼料負荷量と比較して高かった。

⁴ 本試験における用量は作物残留試験から得られた飼料となる作物の残留濃度から予想される最大飼料負荷量と比較して高かった。

物 H: 卵黄)であった。3 mg/kg 飼料投与群では、ピジフルメトフェンは定量限界($0.01 \mu \text{g/g}$)未満であり、代謝物 H の最大残留値は $0.01 \mu \text{g/g}$ (卵黄)であった。

組織中において、ピジフルメトフェンはいずれの投与群においても定量限界 $(0.01~\mu g/g)$ 未満であった。代謝物 H は腎臓以外の組織ではいずれも定量限界 $(0.01~\mu g/g)$ 未満であり、腎臓における最大残留値は 30~m g/kg 飼料投与群における $0.05~\mu g/g$ で、3~m g/kg 飼料投与群では定量限界 $(0.01~\mu g/g)$ 未満であった。 (参照 2、33)

(6)推定摂取量

別紙3の作物残留試験並びに別紙5及び6の畜産物残留試験の分析値を用いて、 ピジフルメトフェンをばく露評価対象物質とした際に、食品中から摂取される推 定摂取量が表15に示されている(別紙7参照)。

なお、本推定摂取量の算定は、登録又は申請された使用方法から、ピジフルメトフェンが最大の残留を示す使用条件で、全ての適用作物に使用され、加工・調理による残留農薬の増減が全くないとの仮定の下に行った。

	国民平均	小児(1~6歳)	妊婦 (4) で こここ	高齢者(65歳以上)
	(体重:55.1 kg)	(体重:16.5 kg)	(体重:58.5 kg)	(体重:56.1 kg)
摂取量 (μg/人/日)	42.9	38.2	49.0	42.5

表 15 食品中から摂取されるピジフルメトフェンの推定摂取量

5. 動物体内動態試験

- (1) ラット①
- ① 吸収

a. 血中濃度推移

Wistar Hannover ラット(一群雌雄各 4 匹)に、 $[phe^{-14}C]$ ピジフルメトフェン若しくは $[pyr^{-14}C]$ ピジフルメトフェンを 5 mg/kg 体重(以下[5.(1)]において「低用量」という。)若しくは雄に 300 mg/kg 体重若しくは雌に 100 mg/kg 体重(以下[5.(1)]において「高用量」という。)で単回経口投与し、又は 1 mg/kg 体重で単回静脈内投与して、血中濃度推移が検討された。

血漿及び全血中薬物動態学的パラメータは表 16 に示されている。

血漿及び全血中放射能には、標識体による差は認められず、低用量群においては投与 $0.5\sim2$ 時間後、高用量群においては投与 $2\sim8$ 時間後に C_{max} に達した。また、経口投与低用量群及び静脈内投与群において顕著な雌雄差は認められなかった。(参照 2、3)

表 16 血漿及び全血中薬物動態学的パラメータ

	投与	5方法		経	П		静脈内	
投与	量(n	ng/kg 体重)	5 300			100	1	
	性	生別	雄	雌	雄	雌	雄	雌
		T _{max} (hr)	2	1	8	8		
	血	$C_{max}\left(\mu g/g\right)$	1.13	1.17	13.0	5.8		
[-1-140]	漿	$T_{1/2}\left(hr\right)$	56.6	149	85.3	42.2		
[phe- ¹⁴ C] ピジフル		$AUC_{0\to\infty}(hr \cdot \mu g/g)$	9.77	10.0	433	121		
メトフェン		T _{max} (hr)	2	1	8	8		
	全血	$C_{max}\left(\mu g/g\right)$	0.63	0.72	8.1	3.8	0.463a	0.366^{a}
		$\mathrm{T}_{1/2}\left(\mathrm{hr}\right)$	116	82.1	163	160	39.4	182
		$AUC_{0\to\infty}(hr \cdot \mu g/g)$	12.2	11.7	488	165	2.60	5.96
		T _{max} (hr)	2	0.5	8	2		
	血	$C_{max}\left(\mu g/g\right)$	0.49	0.67	7.1	3.1		
[140]	漿	$T_{1/2}\left(hr\right)$	56.6	30.4	18.6	10.6		
[pyr-14C] ピジフル		$AUC_{0\to\infty}(hr \cdot \mu g/g)$	7.45	5.81	197	56.2		
メトフェン		T _{max} (hr)	2	0.5	8	8		
メ トノエン	全	$C_{max}\left(\mu g/g\right)$	0.27	0.45	4.7	2.1	0.439^{a}	0.341a
	血	$T_{1/2}\left(hr\right)$	75.3	68.5	196		25.3	20.7
		$AUC_{0\to\infty}(hr \cdot \mu g/g)$	8.05	7.84	358		1.93	1.91

注) Tmax は中央値、それ以外は平均値。

-: 算出できず /: 該当なし

a:ゼロ時点に外挿した血中放射能濃度

b. 吸収率

胆汁中排泄試験[5.(1)④b.]における尿、胆汁、ケージ洗浄液及びカーカス5中排泄率から、投与後 72 時間の吸収率は、低用量単回投与群の雄で 81.3% 86.7%、雌で 87.0% 88.3%、高用量単回投与群の雄で 18.4% 25.3%、雌で 48.6% ~55.9%と算出された。

② 分布

Wistar Hannover ラット(一群雌雄各 4 匹)に、 $[phe^{-14}C]$ ピジフルメトフェンスは $[pyr^{-14}C]$ ピジフルメトフェンを低用量又は高用量で単回経口投与して、体内分布試験が実施された。

主要臓器及び組織における残留放射能濃度は表 17 に示されている。

残留放射能濃度は、いずれの投与群においても、 T_{max} 付近では肝臓、腎臓及び副腎に高く認められたが、投与 96 又は 120 時間後には全ての臓器及び組織で低下した。残留放射能の分布に雌雄、標識体及び投与量による顕著な差は認められなかった。(参照 2、5)

⁵ 組織・臓器を取り除いた残渣のことをカーカスという(以下同じ。)。

表 17 主要臓器及び組織における残留放射能濃度 (µg/g)

標識体	投与量	性別	T _{max} 付近 ^a	投与 96 又は 120 時間後 ʰ
	~	雄	肝臓(8.56)、腎臓(2.45)、血漿 (1.46)	肝臓(0.203)、腎臓(0.061)、全血(0.038)、肺(0.025)、脾臓(0.017)、甲状腺(0.014)、血漿(0.009)
[phe- ¹⁴ C] ピジフル	5 mg/kg 体重	雌	肝臓(10.9)、副腎(5.29)、腎臓(3.50)、甲状腺(2.54)、心臓(2.32)、膵臓(2.32)、肺(2.20)、腎臓脂肪(1.79)、卵巣(1.67)、血漿(1.30)	肝臓(0.082)、全血(0.051)、肺(0.039)、腎臓(0.036)、脾臓(0.020)、甲状腺(0.009)、心臓(0.007)、腎臓脂肪(0.006)、副腎(0.006)、卵巣(0.005)、血漿(0.005)
メトフェン	300 mg/kg 体重	雄	肝臓(77.5)、腎臓(28.5)、副腎 (15.5)、血漿(13.0)	肝臓(6.3)、腎臓(1.7)、全血(0.8)、 肺(0.7)、脾臓(0.4)、血漿(0.4)
	100 mg/kg 体重	雌	肝臟(40.1)、腎臟脂肪(24.7)、副腎(20.2)、腎臟(13.5)、膵臓(11.6)、卵巣(10.6)、甲状腺(8.9)、肺(8.5)、心臓(7.6)、血漿(6.2)	肝臓(2.7)、腎臓(0.7)、全血(0.6)、肺(0.5)、脾臓(0.2)、血漿(0.2)
	5 mg/kg 体重	雄	肝臓(9.46)、腎臓(2.28)、副腎 (0.905)、血漿(0.686)	肝臓(0.318)、腎臓(0.057)、全血(0.034)、肺(0.018)、血漿(0.013)
		雌	肝臓(12.6)、副腎(3.08)、腎臓(2.79)、膵臓(1.61)、甲状腺(1.60)、心臓(1.49)、肺(1.28)、胸腺(1.27)、卵巣(1.00)、血漿(0.888)	肝臓(0.199)、全血(0.042)、肺(0.035)、腎臓(0.034)、脾臓(0.011)、心臓(0.010)、副腎(0.009)、血漿(0.009)
[pyr- ¹⁴ C] ピジフル メトフェン	300 mg/kg 体重	雄	肝臓(80.9)、腎臓(22.4)、副腎(21.5)、腎臓脂肪(19.3)、膵臓(13.3)、肺(9.7)、甲状腺(9.5)、心臓(7.7)、胸腺(6.4)、.血漿(6.0)	肝臓(5.1)、腎臓(1.0)、全血(0.4)、 甲状腺(0.4)、肺(0.3)、血漿(0.3)
	100 mg/kg 体重	雌	肝臟(41.9)、腎臟脂肪(17.9)、副腎(16.7)、膵臓(16.7)、腎臓(13.5)、 卵巣(10.5)、甲状腺(7.9)、肺(7.7)、 胸腺(7.1)、心臓(6.8)、子宮(5.5)、 脾臓(4.4)、血漿(4.4)	肝臓(3.0)、甲状腺(0.7)、腎臓(0.5)、 全血(0.5)、肺(0.3)、脾臓(0.2)、副 腎(0.2)、膵臓(0.2)、血漿(0.2)

a: [phe-14C] ピジフルメトフェン投与群においては、低用量投与群で雄では投与 2 時間後、雌では投与 1 時間後、高用量投与群で雌雄とも投与 8 時間後。[pyr-14C] ピジフルメトフェン投与群においては、低用量投与群では雌雄とも投与 0.5 時間後、高用量投与群では雌雄とも投与 8 時間後。

③ 代謝

排泄試験[5.(1)④a.及びb.]で得られた尿、糞及び胆汁並びに血中濃度推移検討[5.(1)①a.]で得られた血漿を試料として、代謝物同定・定量試験が実施された。

尿、糞及び胆汁中の主要代謝物は表 18 に、血漿中の主要代謝物は表 19 に示されている。

b: [phe-14C] ピジフルメトフェン低用量投与群においては投与 120 時間後、その他の投与群では投与 96 時間後。

未変化のピジフルメトフェンは糞中で最大 63.1%TAR 認められ、尿、胆汁及び血漿中ではほとんど認められなかった。いずれの試料においても多くの代謝物が認められ、主要代謝物として尿では、Ah-glu、C-glu、L、H 及び H-sul、糞では Ad、Ah2、D、L、P 及び Uh、胆汁では Ah-glu、C-glu、Ch-glu、D-glu、Md2-cys、Mh-glu、R-glu 及び S-glu、血漿では C-glu、F、H、H-sul、I-sul 及び L がそれぞれ認められた。

ラットにおけるピジフルメトフェンの主要代謝経路は、①ベンジル位メチレン基及びフェニル基の水酸化による代謝物 Ah1 及び Ah2 の生成、②メトキシ基の脱離による代謝物 B の生成、③脱メチル化による代謝物 C 及び D の生成、④脱クロル化を伴う水酸化による代謝物 E の生成、⑤ベンジル位メチレン基の開裂による代謝物 H、J、L 及び N の生成、⑥アミド結合の開裂による代謝物 F の生成と、それらに引き続くグルクロン酸又は硫酸抱合と考えられた。(参照 2、6)

表 18 尿、糞及び胆汁中の主要代謝物 (%TAR)

標識体	投与量	性別	試料	採取 時間 (日)	ピジフ ルメト フェン	代謝物 a
		雄	尿	0 - 3	ND	H-sul(14.9)、H(4.0)、K-glu(1.7)、Ch-sul(0.1)、 未同定(0.8)
	5	仏出	糞	0 - 4	2.2	Uh(8.1)、Ah2(5.2)、Ad(4.4)、Ah1(2.7)、 D(2.3)、E(2.1)、P(1.9)、B(1.3)、未同定(27.4)
	mg/kg 体重		尿	0 - 3	ND	H-sul(7.8)、H(6.6)、C-glu(0.4)、Ad(0.2)、 Ah-sul(0.2)、Ah2(0.1)、未同定(3.2)
[-1 - 14C]		雌	糞	0 - 4	3.9	Ah2(8.2)、P(6.3)、D(5.9)、Uh(5.0)、Ah(4.4)、 E(3.4)、Bh1(2.1)、Ad(2.0)、Ph(1.9)、B(0.9)、 未同定(17.0)
[phe- ¹⁴ C] ピジフル メトフェン	300		尿	0 - 3	0.1	H(3.1)、H-sul(2.5)、K-glu(0.4)、Ch-sul(0.2)、 I-sul(0.1)、未同定(0.1)
7 17 12	mg/kg 体重	雄	糞	0 - 4	44.3	Ah2(5.3)、Ad(3.0)、Uh(2.9)、S(2.7)、Ah(1.5)、Ch1(1.3)、D(1.1)、P(1.0)、Bh1(1.0)、E(0.9)、Md1(0.5)、Mh2(0.4)、未同定(10.5)
	100	.11.1/4	尿	0 - 3	0.1	H(6.2)、H-sul(4.6)、Ad(0.6)、Ah2(0.5)、 C-glu(0.4)、K-glu(0.3)、Ch-sul(0.3)、 Ch-glu(0.2)、I-sul(0.1)、Bh1(0.1)、未同定(1.7)
	mg/kg 体重	雌	糞	0 - 4	31.1	Ah2(10.5)、D(5.3)、Ad(4.6)、Ah(2.5)、Uh(2.1)、P(2.1)、E(1.7)、Bh1(1.1)、Ph(0.8)、Md1(0.6)、Ch1(0.6)、B(0.5)、未同定(6.1)
[pyr- ¹⁴ C] ピジフル	5	雄	尿	0 - 3	ND	L(8.9)、N(2.2)、O(2.0)、J-glu(1.4)、 Ch-sul(0.5)、Q-glu(0.4)、J(0.2)、C-glu(0.1)、 未同定(10.3)
メトフェン	mg/kg 体重	少性	糞	0 - 4	2.6	Ad(6.0)、L(5.1)、Ah2(3.0)、Ch1(2.6)、D(2.5)、Uh(2.1)、Bh1(1.6)、E(1.4)、P(1.4)、B(0.7)、未同定(21.7)

	T	ı			1	
		性	試	採取	ピジフ	
標識体	投与量	別	料料	時間	ルメト	代謝物 a
		1,11	111	(目)	フェン	
			尿	0 - 3	ND	L(4.3), J-glu(1.4), O(1.3), N(0.7),
				0 3	ND	Q-glu(0.5)、J(0.1)、未同定(10.0)
		雌				P(5.9), Ah2(4.8), D(4.4), E(3.9), Uh(2.7),
			糞	0 - 4	3.1	Ah1(2.5), Md1(1.9), Ad(1.4), Ph(1.0),
						Bh1(0.6)、未同定(24.8)
			П	0 0	MD	L(2.1), N(0.5), J-glu(0.4), O(0.3),
	300		尿	0 - 3	ND	Q-glu(0.1)、未同定(1.7)
	mg/kg	雄				L(5.8), Ah2(3.9), Ad(3.4), D(2.5), Uh(2.3),
	体重		糞	0 - 4	48.2	Ah(1.1), Ch1(1.1), Bh1(0.7), P(1.0), S(0.8),
						Md1(0.6)、B(0.3)、未同定(7.7)
						L(2.9), J-glu(0.8), O(0.5), N(0.5),
			₽	0 0	ND	Q-glu(0.2), C-glu(0.2), Ah2(0.2), J(0.1),
	100		尿	0 - 3	ND	Ch-sul(0.1), Bh1(0.1), Ah-glu(0.1), Ad(0.1),
	mg/kg	雌				未同定(3.1)
	体重					Ah2(7.5), D(4.3), Uh(3.1), Ad(3.0), P(2.5),
			糞	0 - 4	31.2	L(1.4), E(1.4), Md1(1.0), Bh1(0.9), Ah(0.8),
						B(0.6)、Ch1(0.6)、Ph(0.4)、未同定(8.2)
			尿	0 - 3	ND	H(5.8)、H-sul(5.6)、K-glu(0.5)、未同定(0.4)
			糞	0 - 2	7.3	D(0.7)、未同定(4.0)
		雄	пп			Ah-glu(20.2), Ch-glu(8.6), Mh-glu(6.5),
			胆	0 - 1	ND	C-glu(4.6), Md2-cys(3.6), D-glu(1.5),
			汁			Md-glu(1.4)、未同定(19.5)
	5					Ah-glu(3.9), C-glu(3.1), H-sul(1.0),
	mg/kg		尿	0 - 3	ND	D-glu(1.0), Ch-glu(0.9), H(0.7), Ah2(0.5),
	体重					Mh-glu(0.2)、Ah-sul(0.2)、未同定(10.0)
		雌	糞	0 - 2	5.9	D(1.2)、未同定(0.7)
			пн			Ah-glu(10.7), Ch-glu(9.9), R-glu(9.9),
			胆	0 - 2	ND	C-glu(9.7), Md2-cys(8.6), D-glu(6.3),
[phe-14C]			汁			Md-glu(1.2)、未同定(24.8)
ピジフル						H-sul(2.6), H(0.9), Ah2(0.1), K-glu(0.1),
メトフェン			尿	0 - 3	ND	C-glu(0.1), Ch-glu(0.1), I-sul(0.1),
	000					Ah-glu(0.1)、未同定(0.1)
	300	+44	糞	0 - 3	63.1	B(0.7)、M(0.3)、未同定(2.1)
	mg/kg	雄				Ah-glu(5.9), C-glu(1.9), Ch-glu(1.8),
	体重		胆	0 0	0.0	D-glu(0.9), Mh-glu(0.8), R-glu(0.6),
			汁	0 - 2	0.2	Md2-cys(0.5), Md-glu(0.5), P-glu(0.4),
						S-glu(0.4)、未同定(3.8)
						H(3.1), H-sul(2.9), Ah-glu(2.1), C-glu(1.1),
	100			0 0	3.75	Ch-glu(1.1), Ah2(0.9), D-glu(0.4), Ad(0.3),
	mg/kg	雌	尿	0 - 2	ND	Mh-glu(0.3), Bh1(0.2), Ah-sul(0.2), E(0.1),
	体重					D(0.1)、未同定(2.3)
	'' =		糞	0 - 2	35.6	D(0.9)、B(0.4)、未同定(1.8)
L	1	1	~~		55.0	1 ()

標識体	投与量	性別	試料	採取 時間 (日)	ピジフ ルメト フェン	代謝物 a			
			胆汁	0 - 2	ND Ah-glu(11.8)、C-glu(6.0)、Ch-glu(3.8 D-glu(2.0)、Ad-glu(1.6)、Mh-glu(1.3) Md2-cys(1.3)、Md-glu(1.2)、S-glu(0. 同定(4.4)				
			尿	0 - 2	ND	L(6.5)、N(1.6)、J-glu(1.1)、O(0.9)、 Q-glu(0.2)、未同定(2.0)			
			糞	0 - 2	7.9	D(0.8)、L(0.4)、P(0.2)、Ah2(0.2)、未同定(0.5)			
	5	雄	胆汁	0 - 1	ND	Ah-glu(20.9)、Md2-cys(6.5)、C-glu(6.0)、 Mh-glu(5.5)、Ad-glu(4.0)、J-glu(3.6)、 Md-glu(2.9)、D-glu(2.1)、Ch-glu(2.1)、L(1.7)、 S-glu(1.6)、N(0.9)、未同定(13.7)			
	mg/kg 体重	雌	尿	0 - 2	ND	L(2.4)、N(0.7)、J-glu(0.6)、O(0.4)、C-glu(0.3)、Q-glu(0.1)、J(0.1)、Ah-glu(0.1)、Ch-sul(0.1)、Ah2(0.1)、未同定(1.8)			
			糞	0 - 2	6.1	D(1.1)、L(0.8)、Ah2(0.2)、P(0.2)、未同定(1.0)			
[pyr-14C]			胆汁	0 - 1	ND	Ah-glu(21.5)、C-glu(14.0)、S-glu(6.4)、 Mh-glu(6.4)、D-glu(4.7)、Ad-glu(3.9)、 J-glu(3.1)、Ch-glu(1.4)、P-glu(1.0)、未同定 (15.1)			
ピジフル メトフェン			尿	0 - 2	ND	L(1.3)、N(0.4)、J-glu(0.2)、O(0.1)、未同定(0.6)			
	200		糞	0 - 2	24.5	P(2.9)、M(2.0)、未同定(27.2)			
	300 mg/kg 体重	雄	胆汁	0 - 1	ND	Ah-glu(4.9)、Ch-glu(1.7)、C-glu(1.0)、Md2-cys(0.6)、D-glu(0.5)、Md-glu(0.5)、J-glu(0.3)、L(0.2)、S-glu(0.2)、N(0.1)、P-glu(0.1)、Mh-glu(0.1)、Ad-glu(0.1)、未同定(5.0)			
			尿	0 - 2	ND	L(3.4)、J-glu(0.7)、N(0.4)、Ah-glu(0.3)、 C-glu(0.2)、Q-glu(0.1)、J(0.1)、未同定(1.3)			
	100		糞	0 - 2	32.6	L(1.7)、未同定(14.7)			
ND WILLS	mg/kg 体重	雌	胆汁	0 - 1	ND	Ah-glu(11.4)、C-glu(5.7)、D-glu(4.1)、 Ch-glu(3.8)、Mh-glu(3.5)、Md2-cys(2.3)、 J-glu(1.6)、Md-glu(0.8)、S-glu(0.7)、 P-glu(0.4)、Q-glu(0.1)、L(0.1)、未同定(6.6)			

ND: 検出されず

a: 代謝物 Ad は3種類、Ah は2種類、Ah-glu は6種類、Bh1 は2種類、Ch-glu は6種類、Ch-sul は4種類、D-glu は3種類、J-glu は2種類、Md1 は2種類、Md-glu は3種類、Md2-cys は2種類、Mh-glu は5種類、R-glu は2種類、S-glu は2種類、Uh は3種類、の異性体の合算値。

表 19 投与後 96 時間における血漿中の主要代謝物 (%AUC)

標識体	投与 量	性別	ピジフ ルメト フェン	代謝物 a
	5	雄	1.9	H-sul(41.1)、I-sul(6.1)、H(4.3)、K-glu(3.4)、C-glu(2.7)、Md-glu(2.2)、Ah-glu(1.0)、Ah2(0.8)、未同定(11.3)
[phe-14C]	mg/kg 体重	雌	2.8	H-sul(41.0)、I-sul(9.3)、H(5.2)、Ah2(4.3)、C-glu(3.6)、Ah1(2.5)、Ah-glu(1.6)、Ad-glu(1.4)、Md-glu(1.2)、K-glu(0.9)、未同定(10.9)
ピジフル メトフェン	300 mg/kg 体重	雄	1.3	H-sul(44.1)、I-sul(4.8)、K-glu(3.4)、Ah-glu(3.1)、H(2.4)、Md-glu(1.9)、Ch-sul(1.8)、C-glu(1.8)、Ah2(1.5)、Ad-glu(0.9)、未同定(4.7)
	100 mg/kg 体重	雌 5.0		H-sul(32.2)、I-sul(9.2)、H(5.3)、Ah1(3.6)、Ah2(2.5)、K-glu(2.4)、C-glu(1.8)、Ad-glu(1.0)、Ah-glu(1.0)、Md-glu(0.9)、未同定(8.3)
	5 mg/kg	雄	0.5	F(9.5)、L(7.7)、C-glu(3.9)、J-glu(2.9)、N(2.6)、Ah-glu(2.3)、Md-glu(1.8)、Ah2(1.7)、Ah1(1.4)、Ad-glu(1.1)、未同定(36.9)
[pyr-14C]	体重	雌	5.2	F(14.7)、L(8.1)、C-glu(7.8)、J-glu(6.7)、Ah2(4.0)、Ah1(3.3)、N(2.0)、Ad-glu(1.4)、未同定(39.6)
ピジフル メトフェン	300 mg/kg 体重	雄	1.9	F(13.0)、L(6.9)、Ah-glu(3.2)、N(2.5)、J-glu(2.5)、C-glu(2.3)、Ah2(1.8)、Md-glu(1.6)、Ah1(1.2)、Ad-glu(0.7)、未同定(27.1)
	100 mg/kg 体重	雌	4.9	F(14.8)、L(7.0)、J-glu(6.2)、Ah1(3.5)、Ah2(3.5)、C-glu(2.0)、N(1.9)、Ah-glu(1.7)、Md-glu(1.4)、Ad-glu(1.2)、未同定(21.0)

a:代謝物 Md-glu は2種類の異性体の合算値

4 排泄

a. 尿及び糞中排泄

Wistar Hannover ラット(一群雌雄各 4 匹)に $[phe^{-14}C]$ ピジフルメトフェン 又は $[pyr^{-14}C]$ ピジフルメトフェンを低用量又は高用量で単回経口投与して、尿及 び糞中排泄試験が実施された。

投与後168時間の尿及び糞中排泄率は表20に示されている。

投与放射能は、雌雄、標識体及び投与量に関わらず、主に糞中に排泄された。 投与後 24 時間の尿及び糞中排泄率は、低用量投与群の尿で 16.1%TAR \sim 22.3%TAR、糞で 43%TAR \sim 62%TAR、高用量投与群の尿で 5.7%TAR \sim 13.3%TAR、糞で 70%TAR \sim 83%TAR であった。いずれの投与群においても、投与後 168 時間には投与放射能の 95%以上が排出された。(参照 2、4)

表 20 投与後 168 時間の尿及び糞中排泄率 (%TAR)

		[phe	-14C]ピジ	フルメトフ	ェン	[pyr-	¹⁴ C]ピジフ	アルメトフ	ェン
	採取			300	100			300	100
試料	時間	$5~\mathrm{mg/k}$	kg 体重	mg/kg	mg/kg	5 mg/k	g 体重	mg/kg	mg/kg
	(h)			体重	体重			体重	体重
		雄	雌	雄	雌	雄	雌	雄	雌
	0-24	19.7	16.1	5.7	13.3	22.3	16.5	6.8	12.4
尿	0-72	21.1	17.9	6.7	14.9	26.2	18.3	7.7	13.8
	0-168	21.2	18.1	6.7	15.0	26.5	18.4	7.7	13.9
	0-24	62	59	83	70	43	46	83	74
糞	0-72	73.3	75.4	91.8	83.5	66.4	68.9	90.7	85.1
	0-168	73.8	76.4	92.2	83.9	67.4	69.8	91.0	85.5
ケージ洗浄液	0-168	3.9	3.7	4.0	2.2	2.8	8.3	2.8	1.6
組織	168	0.1	< 0.1	< 0.1	< 0.1	0.1	0.1	< 0.1	< 0.1
消化管	168	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1
消化管内容物	168	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1
カーカス	168	0.1	< 0.1	0.1	0.1	0.1	< 0.1	< 0.1	<0.1
合計 a		99.0	98.2	103	101	96.8	96.6	102	101

a: 投与後 168 時間の各試料の合計。

b. 胆汁中排泄

胆管カニューレを挿入した Wistar Hannover ラット(雌雄各 4 匹)に [phe- 14 C] ピジフルメトフェン又は[pyr- 14 C] ピジフルメトフェンを低用量又は高用量で単回経口投与して、胆汁中排泄試験が実施された。

投与後72時間の尿、糞及び胆汁中排泄率は表21に示されている。

胆汁中排泄率について、低用量投与群では、65.7%TAR~80.5%TAR であり、標識体及び雌雄による差は認められなかった。高用量投与群では、雄で15.1%TAR~19.3%TAR、雌で35.8%TAR~40.7%TAR であった。(参照2、4)

表 21 投与後 72 時間の尿、糞及び胆汁中排泄率 (%TAR)

		[phe	-14 <u>C]ピジン</u>	フルメトフ	ルメトフェン [pyr-14C]ピジフルメトフェ						
	採取			300	100			300	100		
試料	時間	5 mg/k	kg 体重	mg/kg	mg/kg	5 mg/k	g 体重	mg/kg	mg/kg		
	(h)			体重	体重			体重	体重		
		雄	雌	雄	雌	雄	雌	雄	雌		
	0-24	12.1	6.0	3.2	14.3	12.5	6.8	2.2	6.8		
尿	0-72	12.3	6.4	4.3	15.4	12.8	6.9	2.4	7.1		
糞	0-24	14	10	60	39	13	13	76	46		
英	0-72	14.5	10.2	76.0	43.3	13.2	13.5	79.6	48.7		
胆汁	0-24	65.2	79.5	17.3	35.0	71.7	78.5	13.6	39.9		
旭什	0-72	65.7	80.5	19.3	35.8	72.0	78.9	15.1	40.7		
ケージ洗浄液	0-72	3.0	1.2	1.6	4.6	1.7	1.1	0.8	0.7		
消化管	72	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
消化管内容物	72	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
カーカス	72	0.3	0.2	0.1	0.1	0.2	0.1	0.1	0.1		
合計 a		95.8	98.5	101	99.2	99.9	101	98.0	97.3		

a: 投与後 72 時間の各試料の合計。

(2) ラット②

Wistar Hannover ラット(雌雄各 4 匹)に非標識体ピジフルメトフェンを 3、10、30、100、300、500 及び 1,000(雄のみ)mg/kg 体重の用量で単回若しくは 7 日間強制経口投与又は 1 mg/kg 体重で単回静脈内投与して、ピジフルメトフェンの血中濃度が測定された。

単回経口及び静脈内投与並びに 7 日間反復経口投与における全血中薬物動態 学的パラメータは表 22 及び 23 にそれぞれ示されている。

 T_{max} 及び $T_{1/2}$ は雌雄とも投与量の増加に伴い増加したが、 C_{max} 及び $AUC_{0-\infty}$ は非線形を示した。絶対的バイオアベイラビリティは雌雄とも低く、雄で 2.3% $\sim 6.3\%$ 、雌で $4.8\% \sim 36.8\%$ であり、顕著な雌雄差が認められた。またピジフルメトフェンの反復投与による蓄積率は低かった。(参照 2、7)

表 22 全血中薬物動態学的パラメータ (単回経口及び静脈内投与)

投与 方法	投与量	性別	T _{max} (hr)	C _{max} (µg/g)	T _{1/2} (hr)	$AUC_{0 ightarrow \infty}$ (hr • ng/mL)	絶対的バイオア ベイラビリティ (%)
	3	雄	2.00	7.86	_	_	_
	mg/kg 体重	雌	1.00	76.0	2.74	296	23.0
	10	雄	2.00	12.4		_	2.8
	mg/kg 体重	雌	2.00	178	2.96	820	21.0
	30	雄	2.00	38.9	2.76	324	3.0
	mg/kg 体重	雌	3.00	527	3.00	4,490	36.8
経口	100	雄	4.00	242	3.17	1,800	6.0
産口	mg/kg 体重	雌	5.00	674	3.15	8,270	20.8
	300	雄	6.00	602	3.53	6,360	6.3
	mg/kg 体重	雌	7.00	639	5.69	10,700	7.6
	500	雄	6.00	380	3.76	3,740	2.3
	mg/kg 体重	雌	8.00	640	7.02	11,100	4.8
	1,000	雄	7.00	612	4.08	7,860	2.6
	mg/kg 体重	仏 田	7.00	012	4.00	7,000	2.0
静脈	1	雄		727 a	1.26	266	
内	mg/kg 体重	雌		411 a	1.75	361	

絶対的バイオアベイラビリティ(%)=[AUC $_{\text{経口}}$ ×投与 $\mathbb{L}_{\text{静脈h}}$]/[AUC $_{\text{静脈h}}$ ×投与 $\mathbb{L}_{\text{経口}}$ ×100

^{/:}該当なし -: 算出できず a: ゼロ時点に外挿した血液中濃度

表 23 全血中薬物動態学的パラメータ (7日間反復経口投与)

投与	投与量	性	T_{max}	C_{max}	$T_{1/2}$	$AUC_{0\to\infty}$	蓄積率 a
方法	仅分里	別	(hr)	(μg/g)	(hr)	(hr·ng/mL)	苗傾罕"
	3	雄	2.3	8.5		_	_
	mg/kg 体重/日	雌	1.00	76.5	2.19	264	0.9
	10	雄	2.00	14.9		_	_
	mg/kg 体重/日	雌	2.00	146	2.99	768	1.1
	30	雄	2.00	17.2	1		_
	mg/kg 体重/日	雌	3.00	272	4.43	1,870	0.4
経口	100	雄	6.00	34.3	3.57	391	0.2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mg/kg 体重/日	雌	4.00	259	2.89	2,050	0.3
	300	雄	10.0	63.3	6.34	2,730	0.2
	mg/kg 体重/日	雌	9.00	252	3.46	2,540	0.3
	500	雄	7.00	41.9	3.37	429	0.1
	mg/kg 体重/日	雌	10.0	286	3.24	3,440	0.3
	1,000 mg/kg 体重/日	雄	9.00	64.5	5.85	1,100	0.1

注) 最終投与後の結果

-: 算出できず

a: 投与1及び7日におけるAUC_{0-24h}比

(3) マウス①

① 代謝

ICR マウス (一群雌雄各 4 匹) に[phe-14C] ピジフルメトフェン又は[pyr-14C] ピジフルメトフェンを 10 mg/kg 体重 (以下[5.(3)]において「低用量」という。) 又は 300 mg/kg 体重 (以下[5.(3)]において「高用量」という。) で単回経口 投与して、代謝物の同定・定量試験が実施された。

尿及び糞中の代謝物は表24に示されている。

尿中においては未変化のピジフルメトフェンは認められず、主要な代謝物として、Ah-glu、Ch-glu、H-sul、I-sul 及び L が認められた。

糞中においては、主要成分として未変化のピジフルメトフェンが認められ、主要な代謝物として Ad、Ah2、D、Sh、Uh 等が認められた。

マウスにおけるピジフルメトフェンの主要代謝経路は、①フェニル基等の水酸化による代謝物 Ah 及び Ah2 の生成、②メトキシ基の脱離による代謝物 B の生成、③脱メチル化による代謝物 D 及び U の生成、④ベンジル位メチレン基の酸化的開裂による代謝物 H 及び L の生成と、それらに引き続くグルクロン酸及び硫酸抱合と考えられた。(参照 2、8)

表 24 尿及び糞中の代謝物 (%TAR)

	1		12 27	, ,,,		· O / C 的 1
標識体	投与量	性別	採取 時間 (日)	試料	ピジフ ルメト フェン	代謝物 a
		雄	0 - 2	尿	ND	H-sul(5.32)、Ah-glu(2.05)、 Ch-glu+Ad-glu(1.53)、I-sul(1.3)、T(0.77)、 Ch-gul(0.37)、Ch-sul(0.34)、Sh(0.3)、Uh(0.29)、 Ad(0.22)、未同定(2.04)
	10 mg/kg		0 - 2	糞	4.42	Uh(11.2)、Ah2(7.2)、S+Mh1(4.18)、Sh(4.09)、Ad(4.64)、Sd(2.62)、D(2.48)、Bh(1.32)、S(1.22)、未同定(15.9)
[.]. [.]	体重	雌	0 - 2	尿	ND	H-sul(6.38)、I-sul(4.06)、Ah-glu+Ch-glu (2.67)、Ch-glu+Ad-glu(1.72)、Ch-glu(1.00)、 Ch-sul(0.85)、Sh(0.5)、Bh(0.22)、Ad(0.21)、 T(0.16)、未同定(4.65)
[phe-14C] ピジフル メトフェン			0 - 2	糞	1.08	Uh(10.7)、Sd(7.32)、Sh(6.22)、Ah2(5.77)、Ad(4.41)、S+Mh1(2.55)、D(2.01)、未同定(5.73)
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		雄	0 - 3	尿	ND	H-sul(2.28)、H-glu(1.06)、T(0.61)、 Ch-glu+Ad-glu(0.46)、Ch-sul(0.42)、 Ch-glu(0.42)、I-sul(0.23)、Uh(0.21)、 Ah-glu(0.09)、未同定(1.32)
	300 mg/kg 体重		0 - 2	糞	48.8	Uh(8.08), Ah2(4.19), Sh(2.99), D(1.91), Ad(0.99), S+Mh1(0.75)
		雌	0 - 3	尿	ND	H-sul(3.59)、H-glu(3.24)、Ch-glu(1.72)、 Ch-glu+Ah-glu(1.45)、Ch-glu+Ad-glu(0.91)、 Ch-sul(0.64)、T(0.4)、Bh(0.38)、未同定(1.52)
			0 - 2	糞	47	Uh(4.88), Ah2(2.9), D(1.92), Sh(1.73), Ad(0.84), S+Mh1(0.76), Sd(0.5)
		雄	0 - 2	尿	ND	L(6.19)、Ch-glu(1.75)、Ah-glu(1.09)、 Ch-sul(0.32)、未同定(5.67)
	10		0 - 2	糞	1.14	Uh(13.1)、Ah2(11.4)、Sh(6.66)、D(5.96)、Ad(5.76)、L(2.41)、S+Mh1(2.48)、Bh(1.7)、未同定(8.73)
	mg/kg 体重		0 - 2	尿	ND	L(9.35)、Ah-glu(3.11)、Ch-glu(2.27)、 Ch-sul(0.7)、未同定(14.0)
[pyr- ¹⁴ C] ピジフル		雌	0 - 2	糞	0.58	Uh(14.0)、Sh(9.26)、Ah2(5.35)、Ad(3.75)、 S+Mh1(2.25)、D(1.99)、L(1.48)、Bh(0.97)、 未同定(9.95)
メトフェン		雄	0 - 3	尿	ND	L(2.17)、Ch-glu+Ah-glu(0.39)、 Ad-glu+Ch-glu(0.36)、Ah-glu(0.12)、未同定 (5.12)
	300 mg/kg		0 - 2	糞	44.3	Uh(15.6), Ah2(6.73), D(5.01), L(4.74), Ad(4.65), Sh(3.84), S+Mh1(0.9)
	体重	雌	0 - 3	尿	ND	L(3.91)、Ch-glu+Ah-glu(1.26)、 Ad-glu+Ch-glu(0.56)、Ah-glu(0.38)、 Ch-sul(0.38)、未同定(3.55)
			0 - 2	糞	36.9	Uh(9.76)、Sh(5.84)、Ah2(4.15)、L(3.72)、 D(2.55)、Ad(2.32)、未同定(6.94)

ND:検出されず

a:代謝物 Ah-glu は3種類、Ch-glu は4種類、Ch-sul は3種類、Sh は2種類、Uh は5種類、の異性体の合計値。各代謝物の異性体のうち、ほかの代謝物と分離できなかったものは、その代謝物との合計値として示した。

② 排泄

ICR マウス(一群雌雄各 4 匹)に $[phe^{-14}C]$ ピジフルメトフェン又は $[pyr^{-14}C]$ ピジフルメトフェンを低用量又は高用量で単回経口投与して、尿及び糞中排泄試験が実施された。

投与後 168 時間の尿中及び糞中排泄率は表 25 に示されている。

投与放射能は雌雄、標識体及び投与量に関わらず、主に糞中に排泄された。投与後 24 時間の尿及び糞中排泄率は、低用量投与群の尿で 13.2% TAR~29.3% TAR、糞で 59% TAR~68% TAR、高用量投与群の尿で 6.4% TAR~11.7% TAR、糞で 71% TAR~90% TAR であった。雌雄及び標識体による差は認められなかった。 (参照 2、8)

农 20 □ 汉子区 100 时间 07 M 及 0- 英干 197/吨十 (№ 1/M)												
	採取	[phe	-14C]ピジ:	フルメトフ	ェン	[pyr- ¹⁴ C]ピジフルメトフェン						
試料	時間	10 mg/	kg 体重	300 mg	/kg 体重	10 mg/	kg 体重	300 mg/kg 体重				
	(h)	雄	雌	雄	雌	雄	雌	雄	雌			
	0-24	13.2	21	6.4	11.7	13.8	29.3	7.1	8.8			
尿	0-72	15.0	22.4	7.2	14.1	15.3	30.1	8.2	10.2			
	0-168	15.0	22.7	7.2	14.8	15.4	30.1	8.2	10.3			
	0-24	68	59	82	71	68	59	90	78			
糞	0-72	73.4	62.0	84.5	75.0	78.1	62.7	94.6	80.3			
	0-168	73.8	63.2	84.6	76.0	78.4	62.9	94.7	80.6			
ケージ洗浄液	0-168	8.4	11	4.0	7.1	6.5	10	7.2	6.8			
消化管	168	< 0.1	< 0.1	<0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1			
消化管内容物	168	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
カーカス	168	0.1	< 0.1	0.1	0.1	0.1	0.1	0.1	0.3			
合計 a		96.5	97.0	95.3	98.3	101	103	110	97.1			

表 25 投与後 168 時間の尿及び糞中排泄率 (%TAR)

(4) マウス②

ICR マウス (雌雄各 8 匹) に非標識体のピジフルメトフェンを 10、30、100、200、300、500、750 及び 1,000 mg/kg 体重の用量で単回若しくは 7 日間強制経口投与し、又は 1 mg/kg 体重で単回静脈内投与して、ピジフルメトフェンの血中濃度が測定された。

単回経口及び静脈内投与並びに 7 日間反復経口投与における全血中薬物動態 学的パラメータは、表 26 及び 27 に、それぞれ示されている。

a: 投与後 168 時間の各試料の合計。

 T_{max} 及び $T_{1/2}$ は雌雄とも投与量の増加に伴い増加したが、 C_{max} 及び $AUC_{0\rightarrow\infty}$ は非線形を示した。絶対的バイオアベイラビリティは雌雄とも低かった。(参照 2, 9)

表 26 全血中薬物動態学的パラメータ (単回経口及び静脈内投与)

投与 方法	投与量	性別	T _{max} (hr)	C _{max} (µg/g)	T _{1/2} (hr)	$AUC_{0 ightarrow \infty}$ (hr·ng/mL)	絶対的バイオア ベイラビリティ (%)
	10	雄	1.00	47.9	1.25	104	6.60
	mg/kg 体重	雌	1.00	44.4	1.44	83.4	4.81
	30	雄	1.00	138	1.51	257	6.25
	mg/kg 体重	雌	1.00	113	0.916	138	3.27
	100	雄	1.00	601	1.22	1,590	9.51
	mg/kg 体重	雌	2.00	442	1.54	1,540	7.62
	200	雄	1.00	694	1.39	2,860	10.0
経口	mg/kg 体重	雌	2.00	577	1.41	2,100	7.87
胜日	300	雄	1.00	598	2.28	3,630	7.54
	mg/kg 体重	雌	2.00	475	1.99	2,880	5.63
	500	雄	1.00	591	2.30	3,470	4.38
	mg/kg 体重	雌	1.00	447	2.47	2,570	3.07
	750	雄	0.667	798	2.55	6,040	5.79
	mg/kg 体重	雌	0.704	681	4.84	5,830	5.09
	1,000	雄	0.500	845	2.78	5,370	3.56
	mg/kg 体重	雌	0.500	809	6.52	4,390	2.79
静脈	1	雄	0.0833	236	0.634	156	
内	mg/kg 体重	雌	0.0958	214	1.39	167	

/:該当なし 絶対的バイオアベイラビリティ(%) $=[\mathrm{AUC}_{\&_{\square}} \times$ 投与量 $_{\&_{\mathbb{R}}}$] $/[\mathrm{AUC}_{\&_{\mathbb{R}}} \times$ 投与量 $_{\&_{\square}}] \times 100$

表 27 全血中薬物動態学的パラメータ (7日間反復経口投与)

投与量	性別	T _{max} (hr)	C _{max} (µg/g)	T _{1/2} (hr)	$AUC_{0 ightarrow\infty}$ (hr \cdot ng/mL)	絶対的バイオア ベイラビリティ (%)
10	雄	1.00	14.7	_	_	_
mg/kg 体重/日	雌	1.00	11.6	2.43	37.6	2.28
30	雄	1.00	41.8	0.56	67.5	1.74
mg/kg 体重/日	雌	1.00	28.1	0.604	57.4	1.34
100	雄	0.50	80.8	2.33	358	2.18
mg/kg 体重/日	雌	1.00	85.7	2.31	334	2.13
200	雄	4.00	35.5	2.98	289	1.03
mg/kg 体重/日	雌	1.00	50.2	2.85	415	1.37
300	雄	2.00	54.7	2.19	384	0.818
mg/kg 体重/日	雌	8.00	96.8	_	_	_
500	雄	2.00	46.2	4.15	406	0.518
mg/kg 体重/日	雌	4.00	68.8	5.35	789	0.946
750	雄	8.00	47.9	_	_	_
mg/kg 体重/日	雌	12.0	178	_	_	_
1,000	雄	4.00	88.3	25.9	3,390	2.35
mg/kg 体重/日	雌	12.0	108	_	_	_

注) 最終投与後の結果

-:算出できず

絶対的バイオアベイラビリティ(%)= $[AUC_{AUC} \times 投与量_{静脈内}]/[AUC_{静脈内} \times 投与量_{経口}]×100$

(5) ウサギ

妊娠 NZW ウサギ (一群 4 頭) に非標識体ピジフルメトフェンを 100、300、750 及び 1,000 mg/kg 体重の用量で妊娠 $6\sim27$ 日に強制経口投与して、ピジフルメトフェンの血中濃度が測定された。

全血中薬物動態学的パラメータは表 28 に示されている。

 C_{max} 及び $AUC_{0\cdot24}$ の増加は投与量の増加より小さく、300~mg/kg 体重以上投与群では非線形を示した。 T_{max} は $2\sim24$ 時間であった。(参照 2、10)

表 28 全血中薬物動態学的パラメータ

試料採取日	投与量	T _{max} (hr)	C _{max} (µg/g)	T _{1/2} (hr)	AUC ₀₋₂₄ (hr·ng/mL)
	100 mg/kg 体重/日	2~8	26.4		344
#1#E C E	300 mg/kg 体重/日	2~24	44.1		722
妊娠6日	750 mg/kg 体重/日	4~8	71.2		1,010
	1,000 mg/kg 体重/日	4~12	79.3		1,140
	100 mg/kg 体重/日	2~6	32.2	_	314
<i>₩</i>	300 mg/kg 体重/日	6~24	45.5		471
妊娠 13 日	750 mg/kg 体重/日	6~24	73.5		800
	1,000 mg/kg 体重/日	2~6	50.2	_	681
	100 mg/kg 体重/日	4~12	87.5	5.4	1,110
11 1E 07 E	300 mg/kg 体重/日	4.8	118	6.4	1,560
妊娠 27 日	750 mg/kg 体重/日	8.8	102	_	1,850
htt 111 mm	1,000 mg/kg 体重/日	4.12	116	_	2,050

-:算出できず

(6) 肝ミクロソームによる代謝 (in vitro)

Wistar Hannover ラット(雌 100 個体、雄 200 個体)及びヒト(男女混合 200 個体)に由来する肝ミクロソーム($0.5\,$ mg たん白質/mL インキュベーション混合液)に、NADPH 存在下又は非存在下において、 $[phe^{-14}C]$ ピジフルメトフェン又は $[pyr^{-14}C]$ ピジフルメトフェンを $5\,$ μ mol/L の用量で添加し、37℃で $60\,$ 分間インキュベートして、 $in\,$ $vitro\,$ 代謝試験が実施された。

各試料中の代謝物は表 29 に示されている。

ラット及びヒトの肝ミクロソームにおいて、ピジフルメトフェンの代謝物に質的な差は認められず、ヒト肝ミクロソームで検出された 14 種の代謝物は雄ラット肝ミクロソームで全て認められ、雌ラット肝ミクロソームでは 9 種の代謝物が検出された。 (参照 87、117)

表 29 各試料中の代謝物 (%)

	[phe- ¹⁴ C]ピジフルメト	、フェン / [pyr-14C]ピジ	ジフルメトフェン	
代謝物 b	ا دا	ラット		
	ドト	雄	雌	
P1	1.1 / 0.9	0.7 / ND	ND / ND	
P2	ND / 8.8	ND / 9.2	ND / 1.1	
P3	ND / 4.1	ND / 5.3	ND / 0.5	
P4	ND / 2.6	ND / 2.9	ND / ND	
P5	2.1 / 4.1	1.2 / 2.1	ND / ND	
P6	12.8 / 10.9	7.0 / 6.3	0.6 / 0.4	
P7	1.8 / 1.7	2.0 / 1.9	ND / ND	
P8	6.5 / 5.2	11.8 / 11.1	1.0 / 0.9	
P9	6.1 / 5.2	27.7 / 26.2	16.8 / 16.9	
P10	5.4 / 5.5	3.6 / 2.3	ND / ND	
P11	5.0 / 4.4	3.1 / 3.1	1.0 / 1.1	
P12	26.4 / 29.1	17.5 / 18.2	11.8 / 13.3	
P13	14.3 / ND	13.4 / ND	2.5 / ND	
P14	9.9 / 11.6	7.0 / 6.9	6.7 / 7.2	
ピジフルメトフェン	8.5 / 6.0	5.1 / 4.6	59.6 / 58.7	

a:クロマトグラムの総放射能に対する割合(4 反復の平均値)

ND:検出されず

6. 急性毒性試験等

(1) 急性毒性試験(経口投与)

ピジフルメトフェン (原体) のラットを用いた急性毒性試験 (経口投与) が実施された。

結果は表 30 に示されている。 (参照 2、36)

表 30 急性毒性試験概要(経口投与、原体)

動物種	$\mathrm{LD}_{50}(\mathrm{mg}$	/kg 体重)	知宛された庁仆			
性別・匹数	雄	雌	- 観察された症状			
Wistar ラット 雌 3 匹 ª		>5,000	投与量: 5,000 mg/kg 体重 活動性低下(1 例、投与 2~3 時間後)			
			死亡例なし			

/:該当なし

(2)一般薬理試験

ピジフルメトフェンのラットを用いた一般薬理試験が実施された。 結果は表 31 に示されている。(参照 2、34、35)

b: P1~P14 は HPLC 分析におけるピークを示す。

a:上げ下げ法により実施。溶媒として、0.5%CMC水溶液が用いられた。

表 31 一般薬理試験概要

			£1. 44-	投与量	最大	最小	
痯	(験の種類	動物種	動物	(mg/kg 体重)	無作用量	作用量	結果概要
			数/群	(投与方法)	(mg/kg 体重)	(mg/kg 体重)	
中枢神経	一般状態 (Irwin 法)	Wistar ラット 雌 6				300	300 mg/kg 体重以上:無気力、警戒性低下、驚愕反応低下、正面反射消失、異常呼吸、異常姿勢、異常歩行、立毛、体幹筋緊張低下、散瞳 300 mg/kg 体重以上で切迫と殺(300 及び 1,000 mg/kg体重で各 1 例)
系	自発 運動量				_	100	100 mg/kg 体重以上:自発 運動量減少(投与 1~6 時間 後)
	体温				100	300	300 mg/kg 体重以上:体温 低下(投与 1~6 時間後)
	净価	Wistar ラット	雌 6	0、100、200 (経口) ^a	100	200	200 mg/kg 体重:体温低下 (投与 2 時間後以降)
呼吸	呼吸数、 換気量				200	_	影響なし
·循環器系	心電図、 血圧、 心拍数	Wistar ラット	雌 6	0、100、200 (経口) ^a	100	200	200 mg/kg 体重: QT 間隔延長(投与30分~6時間後)、 心拍数減少(投与3~4時間後)、血圧上昇(投与30分~5時間後)

-:最大無作用量又は最小作用量は設定できなかった。

a : 溶媒として 1%CMC 水溶液を用いた。

< 反復投与試験におけるピジフルメトフェンの血中濃度について>

動物体内動態試験 [5.(2)、(4)及び(5)] でもみられたように、ラット、マウス及びイヌを用いた 90 日間亜急性毒性試験 [7.(2)~(4)] 並びにウサギを用いた発生毒性試験 [10.(3)] において、投与量とピジフルメトフェンの血中濃度に一貫した線形性はなく、投与量の増加による吸収の飽和が認められるものもあったが、動物種によって程度に差が認められた。ピジフルメトフェンの血中濃度について、イヌを除き、雄と比べて雌で高くなる傾向が認められた。

なお、慢性毒性試験及び発がん性試験 $[8.(1)\sim(3)]$ 並びにラットを用いた 2 世代繁殖試験及び発生毒性試験 [10.(1) 及び(2)] においては、ピジフルメトフェンの血中濃度は測定されていない。

7. 亜急性毒性試験

(1) 28 日間亜急性毒性試験(ラット)

Wistar Hannover ラット(一群雌雄各 6 匹)を用いた混餌投与(原体: 0、250、 1,500、8,000 及び 16,000 ppm: 平均検体摂取量は表 32 参照) による 28 日間亜 急性毒性試験が実施された。また、投与4及び28日に採血して、ピジフルメト フェンの濃度が測定された(結果は表33参照)。

投与群		500 ppm	4,000 ppm	8,000 ppm	16,000 ppm
平均検体摂取量	雄	43	343	677	1,320
(mg/kg 体重/日)	雌	40	322	619	1.170

表 32 28 日間亜急性毒性試験(ラット)の平均検体摂取量

性別 雌 投与量(ppm) 500 4,000 8,000 16,000 500 4,000 8,000 16,000 77.18:3038.8 68.796.0 75.470.684.9 81.2 投与 12:30208 160 127 132 56.165.357.2 68.5試 料 4 日 15:30206 47.8 53.9 136 88.1 47.756.8 53.1採 18:3010.723.938.531.3 95.252.336.179.0 取 8:307.9433.6 52.8 79.745.369.390.1 111 投与 時 12:307.4535.2 59.7 58.4 35.3 64.3 52.3 89.1 28期 15:305.87 18.9 33.8 83.8 68.7 55.9 63.0 89.7 日 18:30 15.9 15.9 58.5 93.0 31.7 61.6 101 57.5

表 33 ピジフルメトフェンの全血中濃度(ng/mL)

各投与群で認められた毒性所見は表34に示されている。

雌において 500 ppm 以上投与群で肝臓の補正重量6増加が、4,000 ppm 以上投 与群で肝臓の絶対重量増加が認められたが、500 ppm 及び 4,000 ppm 投与群で は肝毒性を示唆する血液生化学的パラメータの変化及び病理組織学的変化が認 められなかったことから、適応性変化であると考えられた。

本試験において、4,000 ppm 以上投与群の雄及び 8,000 ppm 以上投与群の雌 で肝炎症細胞巣、肝臓の絶対及び補正重量増加等が認められたことから、無毒性 量は雄で 500 ppm(43 mg/kg 体重/日)、雌で 4,000 ppm(322 mg/kg 体重/日) であると考えられた。(参照87、118)

⁶ 体重を共変量として調整した値を補正重量という(以下同じ。)。

表 34 28 日間亜急性毒性試験 (ラット) で認められた毒性所見

投与群	雄	雌
16,000 ppm	・体重増加抑制(投与 0~1 日以降、 投与期間中)・摂餌量減少(投与 1 日以降)^a	・体重増加抑制(投与 0~1 日以降、 0-7 日まで)
8,000 ppm		・摂餌量減少(投与1日以降)a
以上		肝絶対及び補正重量増加
		・小葉中心性肝細胞肥大 b
		• 肝炎症細胞巣 ^c
4,000 ppm	肝絶対及び補正重量増加	4,000 ppm 以下
以上	· 小葉中心性肝細胞肥大	毒性所見なし
	• 肝炎症細胞巣 ^c	
500 ppm	毒性所見なし	

- a: 統計検定は実施されていない。
- b: 8,000 ppm 投与群では統計学的有意差が認められなかったが、検体投与の影響と考えられた。
- c: 統計学的有意差が認められなかったが、検体投与の影響と考えられた。

(2) 90 日間亜急性毒性試験 (ラット)

Wistar Hannover ラット (一群雌雄各 10 匹) を用いた混餌投与 (原体:0、250、1,500、8,000 及び 16,000 ppm: 平均検体摂取量は表 35 参照) による 90 日間亜急性毒性試験が実施された。また、投与 2、9、28 及び 91 日に採血して、ピジフルメトフェンの濃度が測定された (結果は表 36 参照)。

表 35 90 日間亜急性毒性試験 (ラット) の平均検体摂取量

投与群		250 ppm	1,500 ppm	8,000 ppm	16,000 ppm
平均検体摂取量	雄	18.6	111	578	1,190
(mg/kg 体重/日)	雌	21.6	127	727	1,330

表 36 ピジフルメトフェンの全血中濃度 (ng/mL)

	性別			左	隹			Щ	推	
书	设与量(p	pm)	250	1,500	8,000	16,000	250	1,500	8,000	16,000
		7:00	14.8	44.1	47.5	58.2	23.9	86.7	70.6	107
	投与	11:00	3.4	26.5	31.6	35.1	28.9	69.1	68.4	77.3
	2 日	15:00	1.6	16.8	21.4	25.7	17.0	36.9	42.6	53.0
試		18:00	2.4	15.6	29.8	31.3	21.8	49.1	43.2	50.0
料		7:00	2.4	15.0	32.8	54.1	20.7	64.6	83.1	103
採	投与	11:00	<loq< td=""><td>10.5</td><td>23.4</td><td>62.3</td><td>23.3</td><td>48.6</td><td>84.5</td><td>102</td></loq<>	10.5	23.4	62.3	23.3	48.6	84.5	102
取	28 日	15:00	0.9	9.8	30.3	90.2	14.7	37.7	63.9	67.8
時		18:00	<loq< td=""><td>8.3</td><td>27.7</td><td>38.3</td><td>18.1</td><td>38.2</td><td>73.8</td><td>67.2</td></loq<>	8.3	27.7	38.3	18.1	38.2	73.8	67.2
期		7:00	10.4	27.5	34.8	52.8	18.9	76.9	90.5	89.8
	投与	11:00	1.0	10.8	23.2	33.0	17.6	50.3	72.1	65.0
	91日	15:00	1.7	9.1	21.1	32.2	17.0	41.1	85.0	60.3
		18:00	1.1	12.8	42.5	34.6	22.4	45.8	72.9	66.2

<LOQ:定量限界未満

各投与群で認められた毒性所見は表37に示されている。

1,500 ppm 以上投与群の雌で肝臓の絶対及び補正重量増加が認められたが、 1,500 ppm 投与群では肝毒性を示唆する血液生化学的パラメータの変化及び病 理組織的変化が認められなかったことから、適応性変化であると考えられた。

本試験において、1,500 ppm 投与群の雄及び 8,000 ppm 投与群の雌で肝細胞肥大、甲状腺ろ胞上皮細胞肥大等が認められたことから、無毒性量は雄で 250 ppm(18.6 mg/kg 体重/日)、雌で 1,500 ppm(127 mg/kg 体重/日)であると考えられた。(参照 2、46)

(甲状腺ろ胞上皮細胞肥大に関するメカニズム試験は[13.(6)及び(7)]を参照。)

表 37 90 日間亜急性毒性試験 (ラット) で認められた毒性所見

投与群	雄	雌
8,000 ppm	·体重增加抑制(投与1日以降)	・体重増加抑制(投与1日以降)
以上	・摂餌量減少(投与1日以降)	・摂餌量減少(投与1~3日)
		・Chol 増加
		・肝絶対及び補正重量増加
		肝細胞肥大
		・甲状腺ろ胞上皮細胞肥大
1,500 ppm	・肝絶対及び補正重量増加	1,500 ppm 以下
以上	・肝細胞肥大	毒性所見なし
	・甲状腺ろ胞上皮細胞肥大 [§]	
250 ppm	毒性所見なし	

^{§: 1,500} ppm では統計学的有意差が認められなかったが、検体投与の影響と考えられた。

(3)90日間亜急性毒性試験(マウス)

ICR マウス (一群雌雄各 10 匹) を用いた混餌投与 (原体:0、100、500、4,000 及び 7,000 ppm: 平均検体摂取量は表 38 参照) による 90 日間亜急性毒性試験が実施された。また、投与 2、16、30 及び 91 日に採血して、ピジフルメトフェンの濃度が測定された (結果は表 39 参照)。

表 38 90 日間亜急性毒性試験(マウス)の平均検体摂取量

投与群		100 ppm	500 ppm	4,000 ppm	7,000 ppm
平均検体摂取量	雄	17.5	81.6	630	1,160
(mg/kg 体重/日)	雌	20.4	106	846	1,480

表 39 ピジフルメトフェンの全血中濃度 (ng/mL)

	性別			左	隹		此隹			
书	设与量(p	pm)	100	500	4,000	7,000	100	500	4,000	7,000
		7:00	<loq< td=""><td><loq< td=""><td><loq< td=""><td>98.0</td><td>12.0</td><td>21.9</td><td>1.9</td><td>103</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>98.0</td><td>12.0</td><td>21.9</td><td>1.9</td><td>103</td></loq<></td></loq<>	<loq< td=""><td>98.0</td><td>12.0</td><td>21.9</td><td>1.9</td><td>103</td></loq<>	98.0	12.0	21.9	1.9	103
	投与	11:00	<loq< td=""><td><loq< td=""><td>20.3</td><td>50.9</td><td><loq< td=""><td>16.3</td><td>73.5</td><td>248</td></loq<></td></loq<></td></loq<>	<loq< td=""><td>20.3</td><td>50.9</td><td><loq< td=""><td>16.3</td><td>73.5</td><td>248</td></loq<></td></loq<>	20.3	50.9	<loq< td=""><td>16.3</td><td>73.5</td><td>248</td></loq<>	16.3	73.5	248
	2 日	15:00	1.1	3.9	27.2	102	5.9	8.5	117	142
試		18:00	4.1	6.2	31.6	66.5	5.3	14.7	105	390
料		7:00	5.7	2.2	21.7	52.0	<loq< td=""><td>14.6</td><td>36.2</td><td>109</td></loq<>	14.6	36.2	109
採	投与	11:00	149	5.4	30.6	64.3	3.6	3.7	44.5	311
取	30 日	15:00	<loq< td=""><td>2.9</td><td>25.6</td><td>43.3</td><td>1.5</td><td>15.5</td><td>27.3</td><td>53.1</td></loq<>	2.9	25.6	43.3	1.5	15.5	27.3	53.1
時		18:00	2.8	1.9	17.3	38.9	1.9	32.3	42.2	217
期		7:00	<loq< td=""><td>4.3</td><td>65.0</td><td>118</td><td>1.1</td><td>21.8</td><td>140</td><td>770</td></loq<>	4.3	65.0	118	1.1	21.8	140	770
	投与	11:00	1.7	<loq< td=""><td>111</td><td>45.2</td><td>3.4</td><td>11.1</td><td>138</td><td>194</td></loq<>	111	45.2	3.4	11.1	138	194
	91日	15:00	<loq< td=""><td>3.8</td><td>13.1</td><td>122</td><td>1.1</td><td>21.5</td><td>46.9</td><td>132</td></loq<>	3.8	13.1	122	1.1	21.5	46.9	132
		18:00	<loq< td=""><td><loq< td=""><td>28.4</td><td>60.6</td><td>1.3</td><td>8.7</td><td>191</td><td>122</td></loq<></td></loq<>	<loq< td=""><td>28.4</td><td>60.6</td><td>1.3</td><td>8.7</td><td>191</td><td>122</td></loq<>	28.4	60.6	1.3	8.7	191	122

<LOQ:定量限界未満

各投与群で認められた毒性所見は表 40 に示されている。

500 ppm 以上投与群の雄で肝臓の絶対及び補正重量増加が、4,000 ppm 以上投与群の雌で肝臓の絶対及び補正重量増加並びに小葉中心性肝細胞肥大がみられたが、雄の500 ppm 投与群及び雌の4,000 ppm 投与群では、肝毒性を示唆する血液生化学的パラメータの変化及び病理組織的変化が認められなかったことから、適応性変化であると考えられた。

本試験において、4,000 ppm以上投与群の雄及び7,000 ppm投与群の雌でChol 増加、肝臓の絶対及び補正重量増加等が認められたことから、無毒性量は雄で500 ppm(81.6 mg/kg 体重/日)、雌で4,000 ppm(846 mg/kg 体重/日)であると考えられた。(参照2、47)

表 40 90 日間亜急性毒性試験(マウス)で認められた毒性所見

投与群	雄	雌
7,000 ppm	・TG 増加	・Chol 及び TG 増加
		・肝絶対及び補正重量増加
		・小葉中心性肝細胞肥大
4,000 ppm 以上	・Chol 増加	4,000 ppm 以下
	・肝絶対及び補正重量増加	毒性所見なし
	·小葉中心性肝細胞肥大 [§]	
500 ppm 以下	毒性所見なし	

^{§: 4,000} ppm では統計学的有意差が認められなかったが、検体投与の影響と考えられた。

(4)90日間亜急性毒性試験(イヌ)

ビーグル犬 (一群雌雄各 4 匹) を用いたカプセル経口投与 (原体: 0、30、300及び 1,000 mg/kg 体重/日) による 90 日間亜急性毒性試験が実施された。また、投与 1、28 及び 91 日に採血して、ピジフルメトフェンの濃度が測定された(結果は表 41 参照)。

表 41 ピジフルメトフェンの全血中動態学的パラメータ

採取日	投与量		雄			雌	
	(mg/kg 体重/日)	30	300	1,000	30	300	1,000
	T _{max} (hr)	1-2	4-12	4-8	1-4	2-12	4-8
 投与1日	$C_{max}(ng/mL)$	24.6	832	3,510	19.4	529	2,890
投子 1 日	$\mathrm{T}_{1/2}\left(\mathrm{hr}\right)$	_	4.2	4.4	_	4.5	4.3
	AUC ₀₋₂₄ (hr • ng/mL)	85.3	6,710	31,400	79.9	3,430	26,800
	T_{max} (hr)	1.5-2	4-12	4-8	1.5-12	1.5 - 4	4-8
 投与 28 日	$C_{max}(ng/mL)$	36.6	629	1,940	28.6	159	1,820
汉子 20 日	$\mathrm{T}_{1/2}\left(\mathrm{hr}\right)$	_	4.9	3.3	2.7	2.7	3.3
	AUC ₀₋₂₄ (hr • ng/mL)	210	6,230	14,700	175	795	14,300
	T_{max} (hr)	1.5-2	2-8	2-8	0.5 - 4	1.5 - 4	2-4
投与 91 日	C_{max} (ng/mL)	38.3	638	2,070	21.0	150	961
	T _{1/2} (hr)	2.8	3.3	2.6	_	2.4	4.1
// III	AUC ₀₋₂₄ (hr • ng/mL)	191	6,270	17,400	94.8	804	7,020

-:算出できず

各投与群で認められた毒性所見は表 42 に示されている。

本試験において 300 mg/kg 体重/日以上投与群の雄で ALP 及び TG 増加等、雌で体重減少/増加抑制が認められたことから、無毒性量は雌雄とも 30 mg/kg 体重/日であると考えられた。 (参照 2、48)

表 42 90 日間亜急性毒性試験 (イヌ) で認められた毒性所見

投与群	雄	雌
1,000 mg/kg 体重/日	・体重減少/増加抑制(投与1週以降) ・摂餌量減少(投与1~13週の累積) ・肝細胞肥大	・摂餌量減少(投与1週以降) ・リン減少 ・ALP 増加 ・肝絶対、比§及び補正重量増加 ・肝細胞肥大
300 mg/kg 体重/日 以上	 ALP 及び TG 増加 ・肝絶対、比^{7、§}及び補正重量増加 	·体重減少/増加抑制(投与1週以降)
30 mg/kg 体重/日	毒性所見なし	毒性所見なし

^{§:} 統計検定は実施されていないが、検体投与の影響と考えられた。

8. 慢性毒性試験及び発がん性試験

(1) 1年間慢性毒性試験(イヌ)

ビーグル犬(一群雌雄各 4 匹)を用いたカプセル経口投与(原体:0、30、100及び 300 mg/kg体重/日)による 1 年間慢性毒性試験が実施された。

各投与群で認められた毒性所見は表 43 に示されている。

本試験において、300 mg/kg 体重/日投与群の雌雄で肝臓の絶対、比及び補正重量増加等が認められたことから、無毒性量は雌雄とも100 mg/kg 体重/日であると考えられた。(参照2、53)

表 43 1年間慢性毒性試験(イヌ)で認められた毒性所見

投与群	雄	雌
300 mg/kg 体重/日	・ALP、GGT 及び TG 増加 ・肝絶対§§、比§及び補正重量増加 ・甲状腺絶対、比§及び補正重量 増加	・ALP 増加 ・肝絶対§§、比§及び補正重量増加§§
100 mg/kg 体重/日以下	毒性所見なし	毒性所見なし

^{§:} 統計検定が実施されていないが、検体投与の影響と考えられた。

(2) 2年間慢性毒性/発がん性併合試験(ラット)

Wistar Hannover ラット [発がん性試験群:一群雌雄各 52 匹、1 年間慢性毒性試験群:一群雌雄各 12 匹] を用いた混餌投与(原体、雄:0、200、1,000 及び 6,000 ppm、雌:0、150、450 及び 1,500 ppm 8 : 平均検体摂取量は表 44 参照)による 2 年間慢性毒性/発がん性併合試験が実施された。

^{§§:} 統計学的有意差はないが、検体投与の影響と考えられた。

⁷ 体重比重量のことを比重量という(以下同じ。)。

⁸ ラットを用いた 90 日間亜急性毒性試験 [7.(2)] 及び動物体内動態試験 [5.(2)] の結果において、高用量投与群では血中ばく露量が非線形となることが示唆されたことから、投与量と血中濃度の比例関係が認められる範囲を考慮し、雄では 300 mg/kg 体重/日、雌では 100 mg/kg 体重/日を最高用量として投与量が設定された。

表 44 2年間慢性毒性/発がん性併合試験(ラット)の平均検体摂取量

投与群		150 ppm	200 ppm	450 ppm	1,000 ppm	1,500 ppm	6,000 ppm
平均検体摂取量	雄		9.9		51.0		319
(mg/kg 体重/日)	雌	10.2		31.0		102	

/:該当なし

各投与群で認められた毒性所見は表 45 に示されている。

検体投与により発生頻度の増加した腫瘍性病変は認められなかった。

1年間慢性毒性試験群において、1,000 ppm 以上投与群の雄で肝細胞肥大が認められたが、1,000 ppm 投与群では肝毒性を示唆する血液生化学的パラメータの変化及び病理組織的変化が認められなかったことから、適応性変化であると考えられた。

本試験において、1,000 ppm以上投与群の雄及び450 ppm以上投与群の雌で体重増加抑制及び摂餌量減少が認められたことから、本試験における無毒性量は雄で200 ppm(9.9 mg/kg体重/日)、雌で150 ppm(10.2 mg/kg体重/日)であると考えられた。発がん性は認められなかった。(参照2、54)

表 45-1 2年間慢性毒性/発がん性併合試験(ラット)で認められた毒性所見 (非腫瘍性病変)

投与群	雄	雌
6,000 ppm	・GGT 増加・肝絶対及び補正重量増加・肝細胞細胞質内好酸性封入体・肝細胞肥大	
1,500 ppm		
1,000 ppm 以上	・体重増加抑制(投与2週以降) ^a ・摂餌量減少(投与2週以降)	
450 ppm 以上		・体重増加抑制(投与4週以降) ・摂餌量減少(投与4週以降)
200 ppm	毒性所見なし	
150 ppm		毒性所見なし

/:該当なし

a: 6,000 ppm 投与群では投与1週以降。

表 45-2 1 年間慢性毒性試験群で認められた毒性所見 (非腫瘍性病変)

投与群	雄	雌
6,000 ppm	・GGT 増加 ・肝絶対及び補正重量増加 ・肝細胞肥大	
1,500 ppm		
1,000 ppm 以上	・体重増加抑制(投与2週以降) ^a ・摂餌量減少(投与2週以降)	
450 ppm 以上		・体重増加抑制(投与4週以降) ・摂餌量減少(投与4週以降)
200 ppm	毒性所見なし	
150 ppm		毒性所見なし

/:該当なし

a: 6,000 ppm 投与群では投与 1 週以降。

(3) 80 週間発がん性試験(マウス)

ICR マウス (一群雌雄各 50 匹) を用いた混餌投与 (原体:0、75、375 及び $2,250~\rm ppm$ 、平均検体摂取量は表 $46~\rm sm$) による $80~\rm ll$ 間発がん性試験が実施された。

表 46 80 週間発がん性試験(マウス)の平均検体摂取量

投与群		75 ppm	375 ppm	$2,250~\mathrm{ppm}$
平均検体摂取量	雄	9.2	45.4	288
(mg/kg 体重/日)	雌	9.7	48.4	306

各投与群で認められた毒性所見(非腫瘍性病変)は表 47 に、肝臓における腫瘍性病変の発生頻度は表 48 に示されている。

検体投与に関連する腫瘍性病変として、2,250 ppm 投与群の雄で肝細胞腺腫及 び癌の発生頻度増加が認められた。

375 ppm 以上投与群の雄で小葉中心性肝細胞肥大が認められたが、375 ppm 投与群では肝毒性を示唆する他の病理組織学的所見が認められなかったことから、適応性変化であると考えられた。

本試験において、2,250 ppm 投与群の雌雄で体重増加抑制、摂餌量減少等が認められたことから、無毒性量は雌雄とも 375 ppm (雄: 45.4 mg/kg 体重/日、雌: 48.4 mg/kg 体重/日)であると考えられた。 (参照 2、55)

(雄の肝細胞腫瘍に関するメカニズム試験は [13.(1)~(5)] を参照。)

表 47 80 週間発がん性試験 (マウス) で認められた毒性所見 (非腫瘍性病変)

	(7) 112 (3) 12 (1) 2 (7)	
投与群	雄	雌
2,250 ppm	・体重増加抑制(投与1週以降)・摂餌量減少(投与43週以降)・肝絶対及び補正重量増加・小葉中心性肝細胞肥大・好酸性変異肝細胞巣	・体重増加抑制(投与 32 週以降) ・摂餌量減少(投与 31 週以降)
375 ppm 以下	毒性所見なし	毒性所見なし

表 48 肝臓における腫瘍性病変の発生頻度

性別		左	隹			此	推	
投与量(ppm)	0	75	375	2,250	0	75	375	2,250
検査動物数	50	50	49	50	48	50	50	48
肝細胞腺腫 a	4	6	9	22**	0	0	0	1
肝細胞癌 a	2	3	4	10*	0	0	0	0

^{*:} p<0.05、**: p<0.01 (Fisher 直接確率検定)

9. 神経毒性試験

(1) 急性神経毒性試験(ラット)①

Wistar Hannover ラット(一群雌雄各 10 匹)を用いた単回強制経口投与[原体:0、100(雌のみ)、300(雄のみ)、1,000 及び 2,000 mg/kg 体重 9 、溶媒:1%CMC 水溶液]による急性神経毒性試験が実施された。

各投与群で認められた毒性所見は表 49 に示されている。

1,000 mg/kg 体重投与群の雌 1 例で、投与 3.25 時間に、瀕死状態のため切迫と殺された。神経病理組織学的検査において、検体投与による影響は認められなかった。

本試験において、1,000 mg/kg 体重以上投与群の雄で体重減少/増加抑制、同投与群の雌で自発運動量減少等が認められたことから、無毒性量は雄で 300 mg/kg 体重、雌で 100 mg/kg 体重と考えられた。明らかな急性神経毒性は認められなかった。(参照 2、41)

a: 多巣性を含む。

 $^{^9}$ ラットを用いた動物体内動態試験 [5.(2)] の結果、高用量投与群では血中ばく露量が非線形となることが示唆されたことから、投与量と血中濃度の比例関係が認められる範囲を考慮し、雄では 300 $\sim 2,000$ mg/kg 体重、雌では $100 \sim 2,000$ mg/kg 体重の投与量が設定された。

表 49 急性神経毒性試験 (ラット) ①で認められた毒性所見

投与群	雄	雌
2,000 mg/kg 体重		・円背位
		·体温低下(投与 6 時間後)
1,000 mg/kg 体重	・体重減少/増加抑制(投与後 1~2	・立毛、活動性低下及び異常歩行
以上	目)	(投与6時間後)
J		・反復咀嚼(投与1日後)
		・自発運動量減少(投与6時間後)
300 mg/kg 体重	毒性所見なし	
100 mg/kg 体重		毒性所見なし

/:該当なし

(2) 急性神経毒性試験 (ラット) ②10

Wistar Hannover ラット(一群雌 10 匹)を用いた単回強制経口投与(原体:0、100、300 及び 1,000 mg/kg 体重、溶媒:1%CMC 水溶液)による急性神経毒性試験が実施された。

各投与群で認められた毒性所見は表50に示されている。

神経病理組織学的検査において、検体投与による影響は認められなかった。

本試験において、300 mg/kg 体重以上投与群で自発運動量減少等が認められたことから、無毒性量は 100 mg/kg 体重と考えられた。明らかな急性神経毒性は認められなかった。(参照 2、42)

表 50 急性神経毒性試験 (ラット) ②で認められた毒性所見

投与群	雌
1,000 mg/kg 体重	・振戦(投与6時間後)
300 mg/kg 体重以上	・体温低下 ・自発運動量減少(投与 6 時間後) a
100 mg/kg 体重	毒性所見なし

a:統計学的有意差はないが、検体投与による影響と考えられた。

10. 生殖発生毒性試験

(1) 2世代繁殖試験(ラット)

Wistar Hannover ラット(一群雌雄各 24 匹)を用いた混餌投与(原体、雄:0、150、750 及び 4,500 ppm、雌:0、150、450 及び 1,500 ppm¹¹: 平均検体摂取量は表 51 参照)による 2 世代繁殖試験が実施された。

¹⁰ 本試験は雌のみで実施されているが、急性神経毒性試験 (ラット) ①[9.(1)]の結果を確認する目的で実施された追加試験であることから、評価資料とした。

¹¹ ラットを用いた 90 日間亜急性毒性試験 [7.(2)] 及び動物体内動態試験 [5.(2)] の結果において、高用量投与群では血中ばく露量が非線形となることが示唆されたことから、投与量と血中濃度の比例関係が認められる範囲を考慮し、雄では 300 mg/kg 体重/日、雌では 100 mg/kg 体重/日を最高用量として投与量が設定された。

投与群 150 ppm 450 pm750 ppm 1,500 ppm $4,500 \mathrm{ppm}$ 平均検体 P 雄 9.1 46.1 277 摂取量 世代 雌 11.9 36.1 116 (mg/kg \mathbf{F}_1 雄 11.9 59.1 364 体重/日) 世代 雌 14.1 42.4 141

表 51 2世代繁殖試験 (ラット) の平均検体摂取量

/:該当なし

親動物では、4,500 ppm 投与群の P 世代の雄において、体重増加抑制(投与 0 ~1 週以降)、肝及び甲状腺絶対及び補正重量増加並びにび漫性肝細胞肥大及び甲状腺ろ胞上皮肥大が、 F_1 世代の雄において、体重増加抑制、摂餌量減少、肝及び甲状腺絶対及び補正重量増加並びにび漫性肝細胞肥大及び甲状腺ろ胞上皮肥大が認められ 12 、雌においてはいずれの投与群においても毒性影響は認められなかった。児動物では、4,500 ppm 投与群の F_1 世代の雄において、体重増加抑制及び包皮分離遅延が、1,500 ppm 投与群の F_1 世代の雌において、体重増加抑制及び膣開口遅延が、それぞれ認められた。

1,500 ppm 投与群の P 及び F₁ 親動物の雌において、肝臓の絶対及び補正重量増加が、P 親動物の雌において、び漫性肝細胞肥大¹³が認められた。本試験では血液生化学的検査は実施されていないものの、肝毒性を示唆する病理組織学的変化は認められず、ラットを用いた 90 日間亜急性毒性試験 [7.(2)] において、同用量投与群の雌で肝毒性を示唆する血液生化学的パラメータの変化は認められなかったことから、適応性変化であると考えられた。

以上のことから、本試験における無毒性量は、親動物の雄で $750~\rm ppm$ ($P:46.1~\rm mg/kg$ 体重/日、 $F_1:59.1~\rm mg/kg$ 体重/日)、雌で本試験の最高用量 $1,500~\rm ppm$ ($P:116~\rm mg/kg$ 体重、 $F_1:141~\rm mg/kg$ 体重)、児動物の雄で $750~\rm ppm$ ($P:46.1~\rm mg/kg$ 体重/日、 $F_1:59.1~\rm mg/kg$ 体重/日)、雌で $450~\rm ppm$ ($P:36.1~\rm mg/kg$ 体重/日、 $F_1:42.4~\rm mg/kg$ 体重/日) であると考えられた。繁殖能に対する影響は認められなかった。(参照 2、56)

(2)発生毒性試験(ラット)

Wistar Hannover ラット(一群雌 24 匹)の妊娠 $6\sim19$ 日に強制経口投与(原体:0、10、30 及び 100 mg/kg 体重/日、溶媒:1%CMC 水溶液)して、発生毒性試験が実施された。

本試験において、100 mg/kg 体重/日投与群の母動物で体重増加抑制(妊娠 6 ~7 日以降)が認められ、胎児ではいずれの投与群においても毒性影響は認めら

¹² P 及び F₁ 親動物の雄でみられたび漫性肝細胞肥大及び甲状腺ろ胞上皮肥大について、統計検定は実施されていないが、検体投与による影響と判断した。

¹³ 統計検定は実施されていない。

れなかったことから、本試験の無毒性量は、母動物では 30 mg/kg 体重/日、胎児では本試験の最高用量 100 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 2、57)

(3)発生毒性試験(ウサギ)

NZW ウサギ (一群雌 24 匹) の妊娠 $6\sim27$ 日に強制経口投与 (原体:0、10、100 及び 500 mg/kg 体重/ 1^{14} 、溶媒:1%CMC 水溶液)して、発生毒性試験が実施された。また、妊娠 27 日に採血して、ピジフルメトフェンの濃度が測定された (結果は表 52 参照)。

		10	100	500
	汉 子里		mg/kg 体重/日	mg/kg 体重/日
	投与2時間後	32.4	33.1	61.9
血中濃度	投与6時間後	17.5	51.9	103
(ng/mL)	投与 12 時間後	3.33	21.1	78.4
	投与 25 時間後	< 5.00	< 5.00	20.0
C_{ms}	C _{max} (ng/mL)		51.9	103
T_{max}		2	6	6
AUC _{0-t}	(hr·ng/mL)	358	443	1,520

表 52 ピジフルメトフェンの血中濃度及び薬物動態パラメータ

本試験において、母動物及び胎児ともいずれの投与群においても毒性影響は認められなかったことから、無毒性量は母動物及び胎児とも本試験の最高用量 500 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 2、58)

11. 遺伝毒性試験

ピジフルメトフェン(原体)の細菌を用いた復帰突然変異試験、マウスリンパ腫細胞を用いた遺伝子突然変異試験、ヒトリンパ球を用いた染色体異常試験及びマウスを用いた小核試験が実施された。

結果は表53に示されている。

ヒトリンパ球を用いた *in vitro* 染色体異常試験では、代謝活性化系非存在下で構造異常が認められた。しかし、マウス骨髄細胞を用いた *in vivo* 小核試験を含むその他の試験においては陰性であり、ピジフルメトフェンには生体において問題となる遺伝毒性はないものと考えられた。(参照 2、 $60\sim65$)

¹⁴ 動物体内動態試験(ウサギ) [5.(5)] の結果、300 mg/kg 体重/日以上投与群ではピジフルメトフェンの血中濃度が非線形を示すことから、最高用量は十分な体内ばく露量が考えられる500 mg/kg 体重/日と設定された。

表 53 遺伝毒性試験概要 (原体)

	試験	対象	処理濃度・投与量	結果
	復帰突然 変異試験 (参照 60)	Salmonella typhimurium (TA98、TA100、TA1535、 TA1537 株) Escherichia coli [WP2(pKM101)、 WP2 uvrA(pKM101)株]	3~5,000 μg/プレート(+/-S9)	陰性
	復帰突然 変異試験 (参照 61)	S. typhimurium (TA98、TA100、TA1535、 TA1537 株) E. coli [WP2(pKM101)、 WP2 uvrA(pKM101)株]	3~5,000 μg/プレート(+/-S9)	陰性
in vitro	遺伝子突然変異試験	マウスリンパ腫細胞 (L5178Y/TK+/·)	①7.5~60.0 μg/mL(+/-S9) (4 時間処理) ②7.5~90.0 μg/mL(+S9) 7.5~60.0 μg/mL(-S9) (4 時間処理) ③40.0~110 μg/mL(+S9) (4 時間処理)	陰性
	染色体異常 試験	ヒトリンパ球	①16.1~49.2 μg/mL(+S9) (4 時間処理、18 時間培養) 16.1~151 μg/mL(-S9) (4 時間処理、18 時間培養) ②9.2~4,330 μg/mL(+S9) (4 時間処理、18 時間培養) 5.3~16.1 μg/mL(-S9) (22 時間処理) ③3.0~40.0 μg/mL(-S9) (22 時間処理)	陽性 a
in	小核試験 (参照 64)	NMRI マウス (骨髄細胞) (一群雄 7 匹)	500、1,000、2,000 mg/kg 体重 [単回経口投与 24 及び 48 時間後 (2,000 mg/kg 体重投与群のみ)に採 取]	陰性
vivo	小核試験 (参照 65)	NMRI マウス (骨髄細胞) (一群雄 7 匹)	500、1,000、2,000 mg/kg 体重 [単回経口投与 24 及び 48 時間後 (2,000 mg/kg 体重投与群のみ)に採 取]	陰性

注) +/-S9: 代謝活性化系存在下及び非存在下

12. 経皮投与、吸入ばく露等試験

(1) 急性毒性試験(経皮投与及び吸入ばく露)

ピジフルメトフェン (原体) のラットを用いた急性毒性試験 (経皮投与及び吸入ばく露) が実施された。

結果は表 54 に示されている。 (参照 2、37、38)

a:代謝活性化系非存在下、22時間処理において、構造異常が認められた。

表 54 急性毒性試験概要(経皮投与及び吸入ばく露、原体)

投与	動物種	LD ₅₀ (mg/kg 体重)		観察された症状
経路	性別・匹数	雄	雌	観祭されりた症状
経皮 ^a	Wistar ラット 雌雄各 5 匹	>5,000	>5,000	投与量: 5,000 mg/kg 体重 活動性低下(全例) 死亡例なし
		$LC_{50}($	mg/L)	雌雄:努力性呼吸、喘ぎ呼吸、喘鳴呼
吸入b	Wistar ラット 雌雄各 5 匹	>5.11	>5.11	吸、くしゃみ、活動低下、不活発、運動失調 雄:死亡例なし 雌:1例死亡

a: 24 時間閉塞貼付

b:4時間ばく露(エアロゾル)

(2) 眼・皮膚に対する刺激性及び皮膚感作性試験

ピジフルメトフェン(原体)のNZWウサギを用いた眼及び皮膚刺激性試験が実施された。眼に対して、投与1時間後に結膜の軽度の発赤(全例)及び結膜分泌物が認められたが、72時間後には消失した。皮膚刺激性は認められなかった。

CBA マウスを用いた皮膚感作性試験が実施され、結果は陰性であった。(参照 2、 $43\sim45$)

(3) 28 日間亜急性経皮毒性試験(ラット)

Wistar ラット(一群雌雄各 10 匹)を用いた経皮投与(原体:0、10、300 及び 1,000 mg/kg 体重/日、6 時間/日、5 日間/週)による 28 日間亜急性経皮毒性試験が実施された。

本試験において、いずれの投与群においても毒性影響は認められなかったことから、無毒性量は雌雄とも本試験の最高用量 1,000~mg/kg 体重/日であると考えられた。(参照 2、49)

13. その他の試験

マウスを用いた 80 週間発がん性試験 [8.(3)] において、雄で肝細胞腺腫及び癌の発生頻度増加が認められたことから、そのメカニズムを明らかにするための検討試験 (メカニズム試験) [13.(1)~(5)] が実施された。

(1) マウスを用いた発がん性作用機序検討試験

ピジフルメトフェンの肝臓に対する影響を検討するため、ICR マウス (一群雄各 30 匹、投与 2 及び 7 日に各 10 匹と殺) を用いた 28 日間混餌投与 (原体: 0、75 及び 2,250 ppm: 平均検体摂取量は表 55 参照) による肝臓への影響試験が実施された。

表 55 肝臓への影響試験(マウス)の平均検体摂取量

投与群	75 ppm	2,250 ppm
平均検体摂取量(mg/kg 体重/日)	10.0	324

各投与群で認められた影響は表56に示されている。

本試験において、2,250 ppm 投与群では投与 2 日後から小葉中心性肝細胞肥大を伴った肝臓の絶対及び比重量増加、BrdU 標識率増加、総 P450 量増加及び PROD 活性増加が認められた。BrdU 標識率増加は投与 7 日以降 75 ppm 投与群でも認められた。 (参照 2、73)

表 56 肝臓への影響試験(マウス)で認められた影響

投与期間	2 日	7 日	28 日
2,250 ppm	・小葉中心性肝細胞肥大 ・有糸分裂細胞増加 ・BrdU 標識率増加 ・総 P450 量増加 ・PROD 活性増加	・肝絶対及び比重量増加 ・小葉中心性肝細胞肥大 ・総 P450 量増加 ・PROD 活性増加	・肝絶対及び比重量増加・小葉中心性肝細胞肥大・総 P450 量増加・PROD 活性増加
75 ppm 以上	75 ppm 影響なし	• BrdU 標識率増加	• BrdU 標識率増加

(2) マウス培養肝細胞を用いた発がん性作用機序検討試験

ICRマウスの培養肝細胞を用いて、ピジフルメトフェンの肝臓における発がん性作用機序検討試験として、ATP含有量、BrdU標識率(細胞増殖観察)、PROD活性及びBROD活性が測定された。陽性対照として、PB及びEGFが用いられた。結果は表57に示されている。

ピジフルメトフェン投与群において、ATP含有量の減少、BrdU標識率の増加並びにPROD活性及びBROD活性の増加が認められ、陽性対照のPB投与群と同様の結果が得られた。ピジフルメトフェンの高用量処理群ではPROD活性及びBROD活性の減少がみられ、ピジフルメトフェンがPROD活性及びBROD活性を阻害したためと考えられた。(参照2、74)

表 57 発がん性作用機序検討試験の結果概要

検体	溶媒対照 DMSO		ピジフルメトフェン PB					
机上具		5	10	25	35	100	1,000	25
投与量		μmol/L	μmol/L	μmol/L	μmol/L	μmol/L	μmol/L	ng/mL
ATP ^a	674,000	588,000 ↓	612,000↓	567,000↓	556,000↓	595,000↓	548,000↓	
AlPa	(100)	(87.0)	(91.0)	(84.0)	(82.0)	(88.0)	(81.0)	
BrdU	2.65	3.54	3.54	5.03↑	3.99↑	3.39↑	4.41↑	19.7↑
標識率(%)	(100)	(134)	(134)	(190)	(151)	(128)	(166)	(744)
PROD	21.3	39.3↑	$36.4\uparrow$	11.5	3.34	40.4↑	77.1	
活性 b	(100)	(185)	(171)	(54.3)	(15.7)	(190)	(363)	
BROD	86.4	171↑	170↑	63.1	16.8	161↑	274↑	
活性 b	(100)	(199)	(197)	(73.1)	(19.4)	(186)	(318)	

():対照群平均値を 100 とした値 /:該当なし

↑↓: p<0.05、↑↓: p<0.01 (Dunnett 検定)

a: 単位 luminescence unit released、b: 単位 pmol resorufin/min/mg

(3) ヒト培養肝細胞を用いた発がん性作用機序検討試験

男性ヒトの培養肝細胞を用いて、ピジフルメトフェンの肝臓における発がん性作用機序検討試験として、ATP含有量、BrdU標識率(細胞増殖観察)、PROD活性及びBROD活性が測定された。陽性対照として、PB及びEGFが用いられた。結果は表58及び59に示されている。

ヒト培養肝細胞に対しピジフルメトフェンは、 $10~\mu mol/L$ まで PB と同様に PROD 活性及び BROD 活性を誘導した。高濃度においては、細胞毒性のため酵素活性の増加は軽度であった。BrdU 標識率の増加は認められず、細胞増殖は認められなかった。(参照 2、75)

表 58 ヒト培養肝細胞での酵素活性試験結果

検体	溶媒対照 DMSO	ピジフルメトフェン PB						
投与量		5	10	25	35	100	1,000	
仅 分 里		μmol/L	μmol/L	μmol/L	μmol/L	μmol/L	μmol/L	
A /INDo	383,000	362,000	336,000↓	217,000↓	216,000↓	417,000	352,000	
ATPa	(100)	(95)	(88)	(57)	(57)	(109)	(92)	
PROD 活性 b	0.11	$0.32\uparrow$	0.37↑	0.28↑	0.29↑	0.211	0.37↑	
PROD 估性。	(100)	(294)	(332)	(255)	(267)	(190)	(332)	
DDOD 活烘 b	1.15	3.87↑	6.80↑	4.9011	3.66	3.05↑	8.53↑	
BROD 活性 b	(100)	(337)	(593)	(427)	(319)	(266)	(744)	

():対照群平均値を100とした値 /:該当なし

↑↓: P<0.05、↑↓: P<0.01 (Dunnett 検定)

a: 単位 luminescence unit released、b: 単位 pmol resorufin/min/mg

表 59 ヒト培養肝細胞での複製的 DNA 合成試験結果

検体	溶媒対照 DMSO		ピジフル	メトフェン	Р	В	EGF	
投与量		5	10	25	35	100	1,000	25
(大子里		μmol/L	μmol/L	μmol/L	μmol/L	μmol/L	μmol/L	ng/mL
ATPa	268,000	330,0001	285,000	205,000↓	178,000↓	353,000↑	291,000	
AlPa	(100)	(123)	(106)	(76.4)	(66.5)	(132)	(109)	
BrdU 標識率	0.27	0.26	0.32	0.10↓	0.07↓	0.30	0.31	1.76↑
(%)	(100)	(97.9)	(120)	(36.1)	(25.6)	(109)	(116)	(650)

():対照群平均値を100とした値 /:該当なし

↑↓: P<0.05、↑↓: P<0.01 (Dunnett 検定)

a: 単位 luminescence unit released

(4) ヒト、マウス及びラット CAR3 を用いたレポーターアッセイ

ピジフルメトフェンのヒト、マウス及びラットCAR3への結合性を検討するために、ヒト、マウス及びラットのCAR3発現プラスミド及びCYP2B6のCAR応答配列が組み込まれたレポーターベクターを哺乳類COS-1細胞に導入したレポーターアッセイが実施された。

ピジフルメトフェン及びモデルリガンド(ヒト、マウス及びラットCAR3に対し、それぞれCITCO、TCPOBOP及びクロトリマゾール)を用いたCAR3レポーターアッセイの結果は表60に示されている。

ピジフルメトフェンの添加により、ヒト、マウス及びラットのCAR3の直接的活性化を介したCYP2B6プロモーター活性化による転写活性の上昇が認められ、ピジフルメトフェンはヒト、マウス及びラット由来CARの直接活性化物質であることが示唆された。(参照2、76)

表 60 CAR3 レポーターアッセイの結果 (変化率)

コンフトニカト	モデル		ピジフルス	メトフェン	
コンストラクト	リガンド	1 μmol/L	3 μmol/L	10 μmol/L	30 μmol/L
ヒト CAR3	10.3	1.47	4.78	12.6	14.8
マウス CAR3	45.3	24.0	33.7	31.8	20.0
ラット CAR3	95.4	2.85	14.3	36.8	41.9

注)表中の数字は、溶媒対照群の値を1とした場合の変化率

(5) マウスにおける肝薬物代謝酵素誘導試験

肝薬物代謝酵素誘導の関与について検討するため、ICRマウス [一群雌雄各6匹、衛星群:一群雌雄各6匹(0及び7,000 ppm投与群のみ3及び7日で中間と殺)] を用いた28日間混餌投与(原体:0、500、1,500、4,000及び7,000 ppm)による肝酵素誘導検討試験が実施された。

結果の概要は表61及び62に示されている。

ピジフルメトフェン投与群において、P450量並びにPROD活性及びBQ活性の増加が認められ、PROD活性の増加が顕著であった。一方で、PCO活性、EROD活性及びLAH活性の明確な増加は認められなかった。また、P450量並びにEROD活性、PROD活性及びBQ活性においては雌雄とも経時的な増加が認められた。以上の結果から、ピジフルメトフェンはPB様誘導物質と共通する特性を示していると考えられた。(参照2、77)

表 61 マウスを用いた肝薬物代謝酵素誘導試験結果(28 日間投与)

	投与量	0 ppm	500 ppm	1,500 ppm	4,000 ppm	7,000 ppm
	P450 量 a	0.51	0.78↑	0.84↑	0.84↑	0.90↑
	PCO 活性 b	15.5	9.97↓	13.0	11.2↓	10.7∜
+#-	EROD 活性 º	25.6	18.0↓	18.4	21.2	34.8
雄	PROD 活性 ^c	2.77	32.7↑	25.6↑	25.0↑	42.5⋒
	BQ 活性 b	1.73	2.58↑	2.05	4.63↑	6.13↑
	LAH 活性 b	4.12	5.39	10.4↑	10.2↑	14.5⋒
	P450 量 a	0.55	0.65	0.74↑	0.95↑	0.87⋒
	PCO 活性 b	14.1	8.31	7.16↓	7.97↓	6.78↓
,U.F-	EROD 活性 º	23.8	26.2	19.1	32.8↑	33.1↑
雌	PROD 活性 ^c	7.50	38.8⋒	40.3↑	31.7↑	23.6⋒
	BQ 活性 b	4.31	4.28	6.38	10.8⋒	10.8⋒
	LAH 活性 b	4.19	2.91	4.13	2.14↓	4.22

↑↓: p<0.05、↑↓: p<0.01 (Student の t 検定)

a: 単位 nmol/mg protein、b: 単位 nmol/min/mg protein、c: 単位 pmol/min/mg protein

表 62 マウスを用いた肝薬物代謝酵素誘導試験結果(3.7及び28日間投与)

	我 02 、 ノハ と 川 、 「 、 に 別								
	投与期間	3	日	7	日	28 日			
	投与量	0 ppm	7,000 ppm	0 ppm	7,000 ppm	0 ppm	7,000 ppm		
	P450 量 a	0.47	0.97↑	0.49.	0.99↑	0.51	0.90↑		
	PCO 活性 b	12.5	8.85∜	15.5	10.5∜	15.8	10.7↓		
雄	EROD 活性 c	17.6	63.0↑	30.3	59.9↑	25.6	34.8		
水 庄	PROD 活性 c	2.21	22.2↑	1.70	35.3↑	2.77	42.5↑		
	BQ 活性 b	1.70	7.55⋒	1.76	9.54↑	1.73	6.13↑		
	LAH 活性 b	5.51	9.90↑	6.31	12.4	4.12	14.5↑		
	P450 量 a	0.42	0.76↑	0.44	0.77↑	0.55	0.87↑		
	PCO 活性 b	12.2	9.25	18.1	7.59↓	14.1	6.78↓		
雌	EROD 活性 c	43.8	85.7↑	51.7	68.2	23.8	33.1↑		
此生	PROD 活性 c	4.76	61.1↑	5.85	63.8↑	7.50	23.6↑		
	BQ 活性 b	2.46	8.67↑	4.07	10.1⋒	4.31	10.8⋒		
	LAH 活性 b	2.47	3.20	5.49	4.05	4.19	4.22		

↑↓: p<0.05、↑↓: p<0.01 (Student の t 検定)

a: 単位 nmol/mg protein、b: 単位 nmol/min/mg protein、c: 単位 pmol/min/mg protein

<マウス肝細胞腫瘍発生機序のまとめ>

[13.(1)~(5)] の結果から、マウスの肝細胞腺腫及び癌の発生頻度増加は、マウスへのピジフルメトフェン投与により、CARの活性化による細胞増殖の亢進が起こり、それに起因したものと考えられた。しかし、ヒトにおいては、CARを活性化させるが、培養肝細胞における細胞増殖亢進は認められず、ピジフルメトフェンによる肝細胞腫瘍発生機序のヒトへの外挿性は低いと考えられた。

(6) 肝ミクロソーム UDPGT への影響に関する試験(ラット)

ラットを用いた 90 日間亜急性毒性試験 [7.(2)] の雄ラットの肝臓サンプルを用いて、チロキシンを基質とした肝ミクロソーム UDPGT 活性への影響について検討された。

250 ppm以上投与群において、UDPGT活性の増加が認められた。(参照2、78)

(7) 甲状腺ペルオキシダーゼ活性への影響に関する試験(ラット)

Wistar Hannover ラットから調製した甲状腺ミクロソームにピジフルメトフェンを 0.007、0.1、1.5 及び 10 μ mol/L の用量で添加して、TPO 活性に対する影響が検討された。

いずれの処理区においてもTPO活性に対する影響は認められなかった。 (参照 2、79)

<ラット甲状腺ろ胞上皮細胞肥大の発生機序のまとめ>

[13.(6)及び(7)] の結果から、ラットで認められた甲状腺ろ胞上皮細胞肥大は、ピジフルメトフェン投与による甲状腺への直接的な影響によるものではなく、ピジフルメトフェンの肝臓におけるUDPGT活性の誘導による甲状腺ホルモンの代謝亢進及びそれに伴う甲状腺への刺激増加による二次的影響と考えられた。

Ⅲ. 安全性に係る試験の概要(代謝物)

1. 急性毒性試験等

(1) 急性毒性試験(経口投与、代謝物 F 及び G)

代謝物 F 及び G のラットを用いた急性毒性試験(経口投与)が実施された。 結果は表 63 に示されている。(参照 2、39、40)

被験	動物種	LD ₅₀ (mg	/kg 体重)	観察された症状
物質	到777年	雄	雌	既宗で私の心脏仏
$\mathbf{F}^{\mathbf{a}}$	Wistar ラット 雌 9 匹 ^b		$500 \sim$ 2,000	投与量:500、2,000 mg/kg 体重 2,000 mg/kg 体重:呼吸困難、歩行失 調、振戦(1 例のみ)、よろめき歩行、 筋攣縮、腹臥位(2 例のみ)、立毛 2,000 mg/kg 体重で全例死亡
G^{c}	SD ラット 雌雄各 2 匹	>2,000	>2,000	症状及び死亡例なし

表 63 急性毒性試験概要(経口投与、代謝物)

/:該当なし

- a:毒性等級法により実施。溶媒として、0.5%CMC水溶液が用いられた。
- b: 500 mg/kg 体重投与群 6 匹及び 2,000 mg/kg 体重投与群 3 匹に、それぞれ投与された。
- c:溶媒として、DMSOが用いられた。

2. 亜急性毒性試験(代謝物 F、G 及び H)

(1) 28 日間亜急性毒性試験 (ラット、代謝物 F)

Wistar Hannover ラット (一群雌雄各 5 匹) を用いた混餌投与 [代謝物 F:0、100、500、2,000(雄のみ)及び 4,000(雌のみ)ppm: 平均検体摂取量は表 64 参照] による代謝物 Fの 28 日間亜急性毒性試験が実施された。

表 64 28 日間亜急性毒性試験 (ラット、代謝物 F) の平均検体摂取量

投与群		100 ppm	500 ppm	2,000 ppm	4,000 ppm
平均検体摂取量	雄	7.3	37.4	143	
(mg/kg 体重/日)	雌	7.8	42.5		244

/:該当なし

各投与群で認められた毒性所見は表 65 に示されている。

2,000 ppm 投与群の雄及び 4,000 ppm 投与群の雌で、体重増加抑制、摂餌量減少等が認められたことから、本試験における無毒性量は雌雄とも 500 ppm (雄: 37.4 mg/kg 体重/日、雌: 42.5 mg/kg 体重/日)であると考えられた。(参照 2、50)

表 65 28 日間亜急性毒性試験 (ラット、代謝物 F) で認められた毒性所見

投与群	雄	雌
4,000 ppm		体重増加抑制及び摂餌量減少
		・WBC、Neu 及び Lym 増加
		・AST 及び A/G 比増加
		・Glob 減少
2,000 ppm	体重増加抑制及び摂餌量減少	
	・WBC、Neu 及び Mon 増加	
	・AST 及び A/G 比増加	
	・Glob 減少	
500 ppm 以下	毒性所見なし	毒性所見なし

/:該当なし

(2) 28 日間亜急性毒性試験 (ラット、代謝物 G)

Wistar Hannover ラット (一群雌雄各 5 匹) を用いた混餌投与 (代謝物 G:0、2,000、6,000 及び 12,000 ppm: 平均検体摂取量は表 66 参照) による代謝物 Gの 28 日間亜急性毒性試験が実施された。

表 66 28 日間亜急性毒性試験 (ラット、代謝物 G) の平均検体摂取量

投与群		2,000 ppm	6,000 ppm	12,000 ppm
平均検体摂取量	雄	167	511	1,010
(mg/kg 体重/日)	雌	175	572	1,040

本試験において、いずれの投与群でも毒性影響は認められなかったことから、 無毒性量は雌雄とも本試験の最高用量である12,000 ppm(雄:1,010 mg/kg体重/日、雌:1,040 mg/kg体重/日)であると考えられた。(参照2、51)

(3) 28 日間亜急性毒性試験 (ラット、代謝物 H)

Wistar Hannover ラット (一群雌雄各 5 匹) を用いた強制経口投与 (代謝物 H: 0、100、250 及び 500 mg/kg 体重/日、溶媒: コーン油) による代謝物 H の 28 日間亜急性毒性試験が実施された。また、投与 2 及び 22 日に採血して、代謝物 H の濃度が測定された。

全血中薬物動態学的パラメータは表 67 に示されている。

21 日間反復投与後、投与量の増加に伴い C_{max} 及び AUC_{0-24} が増加したが、投与量との相関は認められなかった。反復投与による蓄積性は認められなかった。

500 mg/kg 体重/日投与群の雌雄に鼻咽頭内腔の炎症性滲出液を伴う嗅上皮の変性が認められた。これは鼻腔内異物に起因すると考えられ、250及び500 mg/kg体重/日に認められた引っ掻き行動が異物の吸入につながったと考えられた。

500 mg/kg 体重/日投与群の雄及び 250 mg/kg 体重/日以上投与群の雌で肝補正 重量増加が、500 mg/kg 体重/日投与群の雌で肝臓の絶対重量増加が認められた が、肝毒性を示唆する血液生化学的パラメータの変化及び病理組織学的変化が認められなかったことから、適応性変化であると考えられた。

本試験において、いずれの投与群でも毒性影響は認められなかったことから、無毒性量は雌雄とも本試験の最高用量 500 mg/kg 体重/日であると考えられた。 (参照 87、119)

採取日	投与量	雄			雌		
休 取口	(mg/kg 体重/日)	100	250	500	100	250	500
	$T_{max}(hr)$	2.0-2.0	2.0-4.0	2.0-2.0	2.0-6.0	2.0-2.0	2.0-4.0
	$C_{max}(ng/mL)$	2,880	14,900	53,100	2,810	14,200	33,200
投与2日	AUC ₀₋₂₄ (hr·ng/mL)	16,700	76,300	365,000	22,100	71,200	246,000
	$\mathrm{AUC}_{0\text{-}\infty}(\mathrm{hr} \cdot \mathrm{ng/mL})$	16,800	76,400	366,000	18,900	71,700	250,000
	$C_{max}/Dose$	28.8	59.4	106	28.1	56.8	66.3
	AUC ₀₋₂₄ /Dose	167	305	730	221	285	491
	T_{max} (hr)	2.0-4.0	2.0-2.0	2.0-2.0	2.0-6.0	2.0-2.0	2.0-4.0
	$C_{max}(ng/mL)$	3,980	19,000	54,600	8,170	14,800	48,300
 投与 22 日	AUC ₀₋₂₄ (hr·ng/mL)	20,900	76,900	418,000	46,100	74,400	377,000
投与 22 日	$\mathrm{AUC}_{0\text{-}\infty}(\mathrm{hr}\!\cdot\!\mathrm{ng/mL})$	18,800	77,200	419,000	42,600	64,400	378,000
	C _{max} /Dose	39.8	75.8	109	81.7	59.2	96.6
	AUC ₀₋₂₄ /Dose	209	308	836	461	297	753

表 67 代謝物 H の全血中動態学的パラメータ

(4)90日間亜急性毒性試験(ラット、代謝物 G)

Wistar Hannover ラット(一群雌雄各 10 匹)を用いた混餌投与(代謝物 G: 0、100、300 及び 1,000 mg/kg 体重/日: 平均検体摂取量は表 68 参照)による代謝物 G の 90 日間亜急性毒性試験が実施された。

200 00 日间至心口	ᅩ毋Ӏᅩᇝ	7717 WT	7快件1%以里	
₩ 片 ₩		100	300	1,000
投与群		mg/kg 体重/日	mg/kg 体重/日	mg/kg 体重/日
平均検体摂取量	雄	94.6	286	954
(mg/kg 体重/日)	雌	98.8	295	983

表 68 90 日間亜急性毒性試験(代謝物 G、ラット)の平均検体摂取量

本試験において、いずれの投与群でも毒性影響は認められなかったことから、無毒性量は雌雄とも本試験の最高用量である1,000 mg/kg体重/日(雄:954 mg/kg体重/日、雌:983 mg/kg体重/日)であると考えられた。(参照2、52)

3. 生殖発生毒性試験(代謝物 G)

(1)発生毒性試験(ウサギ、代謝物 G)

NZW 雌ウサギ (一群 $31\sim32$ 匹) の妊娠 $6\sim28$ 日に強制経口投与 (代謝物 G:0、40、100 及び 250 mg/kg 体重/日、溶媒:1%CMC 水溶液)して、発生毒性試験が実施された。

本試験において、いずれの投与群でも母動物及び胎児に毒性所見は認められなかったことから、本試験の無毒性量は母動物及び胎児とも本試験の最高用量 250 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 2、59)

4. 遺伝毒性試験(代謝物 F、G 及び H)

代謝物 F (動物由来)、G (動物及び水中由来)及び H (動物由来)の細菌を用いた復帰突然変異試験、代謝物 F 及び G のマウスリンパ腫細胞を用いた遺伝子突然変異試験(マウスリンフォーマ TK 試験)及びヒトリンパ球を用いた染色体異常試験並びに代謝物 F のラットを用いた小核試験が実施された。

結果は表 69 に示されている。

代謝物 F では、ヒトリンパ球を用いた $in\ vitro$ 染色体異常試験において、代謝活性化系非存在下で構造異常が認められたが、ラット骨髄細胞を用いた $in\ vivo$ 小核試験を含むその他の試験においては陰性であった。(参照 2、 $66\sim72$ 、87、120)

被験 物質		試験	対象	処理濃度・投与量	結果
		復帰突然 変異試験	S. typhimurium (TA98、TA100、TA1535、 TA1537 株) E. coli [WP2(pKM101)、 WP2 uvrA(pKM101)株]	3~5,000 μg/プレート(+/-S9)	陰性
	in vitro	マウスリン フォーマ TK 試験	マウスリンパ腫細胞 (L5178Y/TK+/·)	116~1,860 μg/mL(+/-S9) (4 時間処理)	陰性
F		染色体異常 試験	ヒトリンパ球	①607~1,860 μg/mL(-S9) 347~1,860 μg/mL(+S9) (4 時間処理、18 時間培養) ②347~1,060 μg/mL(-S9) (22 時間処理) 198~1,060 μg/mL(+S9) (4 時間処理、18 時間培養)	陽性a
	in vivo	小核試験	Wistar ラット (骨髄細胞) (一群雄 7 匹)	313、625、1,250 mg/kg 体重 [単回経口投与 24 及び 48 時間 後(1,250 mg/kg 体重投与群の み)に採取]	陰性

表 69 遺伝毒性試験概要(代謝物)

		復帰突然 変異試験	S. typhimurium (TA98、TA100、TA1535、 TA1537 株) E. coli [WP2(pKM101)、WP2 uvrA(pKM101)株]	3~5,000 μg/プレート(+/-S9)	陰性
G	in vitro	マウスリン フォーマ TK 試験	マウスリンパ腫細胞 (L5178Y/TK+ ^{/-})	113~1,810 μg/mL(+/-S9) (4 時間処理)	陰性
		染色体異常 試験	ヒトリンパ球	①591~1,810 μg/mL(+/-S9) (4 時間処理、18 時間培養) ②591~1,810 μg/mL(-S9) (22 時間培処理) 591~1,810 μg/mL(+S9) (4 時間処理、18 時間培養)	陰性
Н	in vitro	復帰突然 変異試験	S. typhimurium (①TA100、TA1535 株、 ②TA98、TA1537 株) E. coli ③[WP2 (pKM101)、WP2 uvrA (pKM101)株]	プレート法: 3~5,000 μg/プレート(+/-S9) プレインキュベーション法:	陰性

注) +/-S9: 代謝活性化系存在下及び非存在下 a: 代謝活性化系非存在下、22時間処理において、構造異常が認められた。

IV. 食品健康影響評価

参照に挙げた資料を用いて、農薬「ピジフルメトフェン」の食品健康影響評価を 実施した。第2版の改訂に当たっては、厚生労働省から、作物残留試験(国内:温 州みかん、りんご等、海外:てんさい、こまつな等)、動物体内動態試験(肝ミク ロソームによる *in vitro* 代謝試験)、28 日間亜急性毒性試験(ラット、代謝物 H)、 遺伝毒性試験(代謝物 H)の成績等が新たに提出された。

14Cで標識したピジフルメトフェンの植物代謝試験の結果、残留放射能の主な成分は未変化のピジフルメトフェンであり、代謝物としてB及びCが認められたが、いずれも10%TRR未満であった。

ピジフルメトフェンを分析対象化合物とした国内における作物残留試験の結果、 ピジフルメトフェンの最大残留値は大麦(玄麦)の1.69 mg/kgであった。ピジフル メトフェンを分析対象化合物とした海外における作物残留試験の結果、ピジフルメ トフェンの最大残留値はからし菜(茎葉)の28.6 mg/kgであった。ピジフルメトフェ ンを分析対象化合物とした後作物残留試験の結果、いずれの試料においても定量限 界(0.01 mg/kg)未満であった。

 14 C で標識したピジフルメトフェンの家畜代謝試験 (ヤギ及びニワトリ) の結果、可食部における主な成分として未変化のピジフルメトフェンのほか、10%TRR を超える代謝物として Ah、F、G(抱合体を含む。)、H(抱合体を含む。)、L(抱合体を含む。)及び N が認められた。

ピジフルメトフェン並びに代謝物Ah2、F、H、L及びNを分析対象化合物とした 畜産物残留試験(ウシ)の結果、15 mg/kg飼料投与群における最大残留値は、ピジ フルメトフェンで0.02 μg/g (腸間膜脂肪、皮下脂肪及び肝臓)、代謝物Ah2で0.06 $\mu g/g$ (肝臓及び腎臓)、Hで0.02 $\mu g/g$ (クリーム)であり、代謝物F、N及びLはい ずれの試料においても定量限界 (0.01 μg/g) 未満であった。また、ピジフルメトフェ ン及び代謝物Hを分析対象化合物とした畜産物残留試験(ニワトリ)の結果、3 mg/kg飼料投与群におけるピジフルメトフェンはいずれの試料においても定量限 界 $(0.01 \, \mu g/g)$ 未満であり、代謝物Hの最大残留値は $0.01 \, \mu g/g$ (卵黄) であった。 14C で標識したピジフルメトフェンのラットを用いた動物体内動態試験の結果、 吸収率は少なくとも低用量単回投与群の雄で81.3%、雌で87.0%、高用量単回投与 群の雄で 18.4%、雌で 48.6%であった。残留放射能濃度は、肝臓、腎臓及び副腎で 高く認められた。投与放射能は主に糞中に排泄され、胆汁中排泄率は低用量単回投 与群で 65.7%TAR~80.5%TAR、高用量単回投与群では雄で 15.1%TAR~ 19.3%TAR、雌で 35.8%TAR~40.7%TAR であった。未変化のピジフルメトフェン は主に糞中で認められ、尿、胆汁及び血漿中にはほとんど認められなかった。各試 料の主要代謝物として、尿では Ah-glu、C-glu、L、H 及び H-sul、糞では Ad、Ah2、 D、L、P 及び Uh、胆汁では Ah-glu、C-glu、Ch-glu、D-glu、Md2-cys、Mh-glu、 R-glu 及び S-glu、血漿では C-glu、F、H、H-sul、I-sul 及び L が、それぞれ認め られた。

各種毒性試験結果から、ピジフルメトフェン投与による影響は、主に体重(増加抑制)、肝臓(重量増加、肝細胞肥大等)及び甲状腺(重量増加)に認められた。 繁殖能に対する影響、催奇形性及び生体において問題となる遺伝毒性は認められなかった。

マウスを用いた発がん性試験において、雄で肝細胞腺腫及び癌の発生頻度増加が認められたが、メカニズム試験及び遺伝毒性試験の結果から、腫瘍発生機序は遺伝毒性メカニズムによるものとは考え難く、評価に当たり閾値を設定することは可能であると考えられた。また、メカニズム試験の結果から、ピジフルメトフェンによる肝細胞腫瘍発生機序のヒトへの外挿性は低いと考えられた。

植物代謝試験の結果、可食部及び飼料に利用する部位において 10%TRR を超える代謝物とる代謝物は認められなかった。家畜代謝試験の結果、10%TRR を超える代謝物として Ah、F、G (抱合体を含む。)、H (抱合体を含む。)、L (抱合体を含む。)及び N が認められたが、Ah、L 及び N はラットにおいて認められた。代謝物 G はラットにおいて認められなかったが、急性毒性試験、90 日間亜急性毒性試験及び発生毒性試験の結果、毒性はピジフルメトフェンと同等又はそれ以下であり、遺伝毒性試験は陰性であった。代謝物 F 及び H は家畜代謝試験の結果、ピジフルメトフェンよりも残留値が高いものがあり、代謝物 F については急性毒性がピジフルメトフェンと比べてやや強いものの、代謝物 F 及び H は 28 日間亜急性毒性試験においてピジフルメトフェンと比べて重篤な影響は認められなかった。また、代謝物 F は生体において問題となる遺伝毒性は認められず、代謝物 F の遺伝毒性試験は陰性であった。代謝物 F 及び F はラットにおいて認められており、家畜代謝試験及び畜産物残留試験の結果から残留値は僅かと考えられた。以上から、農産物及び畜産物のばく露評価対象物質をピジフルメトフェン(親化合物のみ)と設定した。

各試験における無毒性量等は表 70 に、単回経口投与等により生ずる可能性のある毒性影響等は表 71 に示されている。

食品安全委員会は、各試験で得られた無毒性量のうち最小値は、ラットを用いた慢性毒性/発がん性併合試験の 9.9 mg/kg 体重/日であったことから、これを根拠として、安全係数 100 で除した 0.099 mg/kg 体重/日を許容一日摂取量(ADI)と設定した。

また、ピジフルメトフェンの単回経口投与等により生ずる可能性のある毒性影響に対する無毒性量又は最小毒性量のうち最小値は、ラットを用いた発生毒性試験の無毒性量30 mg/kg体重/日であった。一方、ラットを用いた一般薬理試験において、最小毒性量100 mg/kg体重で自発運動量減少が認められたが、ラットを用いた急性神経毒性試験において、当該所見の無毒性量100 mg/kg体重が得られていることを総合的に判断して、食品安全委員会は、ラットを用いた発生毒性試験の無毒性量30 mg/kg体重/日を急性参照用量(ARfD)の設定根拠とすることが妥当と考えた。したがって、これを根拠として、安全係数100で除した0.3 mg/kg体重をARfDと設定した。

ADI 0.099 mg/kg 体重/日

(ADI 設定根拠資料) 慢性毒性/発がん性併合試験

(動物種)ラット(期間)2年間役与方法)混餌

(無毒性量) 9.9 mg/kg 体重/日

(安全係数) 100

ARfD 0.3 mg/kg 体重

(ARfD 設定根拠資料) 発生毒性試験

(動物種) ラット

(期間)妊娠 6~19 日(投与方法)強制経口

(無毒性量) 30 mg/kg 体重/日

(安全係数) 100

<参考>

<JMPR(2018年)>

ADI 0.1 mg/kg 体重/日

(ADI 設定根拠資料) 慢性毒性/発がん性併合試験

(動物種)ラット(期間)2年間(投与方法)混餌

(無毒性量) 9.9 mg/kg 体重/日

(安全係数) 100

aRfD 0.3 mg/kg 体重

(aRfD 設定根拠資料)発生毒性試験(動物種)ラット

(期間) 妊娠 6~19 日

(投与方法) 強制経口

(無毒性量) 30 mg/kg 体重/日

(不確実係数) 100

<EPA (2018年) >

cRfD 0.092 mg/kg 体重/日

(cRfD 設定根拠資料) 発がん性試験

(動物種) マウス(期間) 80 週間(投与方法) 混餌

(無毒性量) 9.2 mg/kg 体重/日

(不確実係数) 100

aRfD 1 mg/kg 体重

(aRfD 設定根拠資料) 急性神経毒性試験

(動物種)ラット(期間)単回(投与方法)強制経口

(無毒性量) 100 mg/kg 体重

(不確実係数) 100

<EFSA (2019年) >

ADI 0.09 mg/kg 体重/日

(ADI 設定根拠資料) 発がん性試験

(動物種)マウス(期間)18 か月間

(投与方法) 混餌

(無毒性量) 9.2 mg/kg 体重/日

(安全係数) 100

ARfD 0.3 mg/kg 体重

(ARfD 設定根拠資料) 発生毒性試験

(動物種) ラット

(期間) 妊娠 6~19 日

(投与方法) 強制経口

(無毒性量) 30 mg/kg 体重/日

(安全係数) 100

<APVMA (2018年) >

ADI 0.1 mg/kg 体重/日

(ADI 設定根拠資料)慢性試験(動物種)ラット(期間)52 週間

(投与方法) 混餌

(無毒性量) 10 mg/kg 体重/日

(不確実係数) 100

ARfD 設定の必要なし

<HC(2018年)>

ADI 0.09 mg/kg 体重/日

(ADI 設定根拠資料) 発がん性試験

(動物種) マウス(期間) 18 か月間

(投与方法) 混餌

(無毒性量) 9.2 mg/kg 体重/日

(安全係数) 100

ARfD 1.0 mg/kg 体重

(ARfD 設定根拠資料) 急性神経毒性試験

(動物種)ラット(期間)単回

(投与方法) 強制経口

(無毒性量) 100 mg/kg 体重

(安全係数) 100

(参照 80~82、121、122)

表 70 各試験における無毒性量等

TI 11 TT		投与量	無毒性量	最小毒性量	/#
動物種	試験	(mg/kg 体重/日)	(mg/kg 体重/日)	(mg/kg 体重/日)	備考
ラット		0、500、4,000、	雄:43	雄:343	雌雄:肝炎症細胞巣、
		8,000、16,000	雌:322	雌:619	肝絶対及び補正重量
	28 日間	ppm			増加等
	亜急性	雄:0、43、343、			
	毒性試験	677、1,320			
		雌:0、40、322、			
		619、1,170			
		0, 250, 1,500,	雄:18.6	雄:111	雌雄:肝細胞肥大、
		8,000、16,000	雌:127	雌:727	甲状腺ろ胞上皮細胞
	90 日間	ppm			肥大等
	亜急性	雄:0、18.6、111、			
	毒性試験	578、1,190			
		雌:0、21.6、127、			
		727、1,330			
		雄:0、200、1,000、		雄:51.0	雌雄:体重増加抑制
	2年間	, 11	雌:10.2	雌:31.0	及び摂餌量減少
	慢性毒性	雌:0、150、450、			
	/発がん	1,500 ppm			
	性併合試	雄:9.9、51.0、319			(-1/2) 2) 14) 2
	験	雌:10.2、31.0、			(発がん性は認められ
		102	4n - 1, 11	4n-41 11	ない)
		雄:0、150、750、		親動物	親動物
		, 11	P雄: 46.1	P雄:277	雄:肝絶対及び補正
		雌:0、150、450、		P雌:-	重量増加等
			F ₁ 雄: 59.1	F1雄:364	雌:毒性所見なし
	O 411/12	P雄:0、9.1、46.1、	141	\mathbf{F}_1 雌:一	児動物:体重増加抑制等
	2世代 敏磁試験	277	児動物	 児動物	市
	繁殖試験	· · · · · · · · · · · · · · · · · · ·	ア動物 P雄:46.1	ア動物 P雄:277	
		•	P雌: 36.1	P雌: 116	
		59.1、364	F ₁ 雄:50.1	F ₁ 雄:364	
		F_1 雌: 0 、 14.1 、	F1雄:42.4	F1雌:141	(繁殖能に対する影響
		42.4、141	I I PMIC • T44.甘	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	は認められない)
		0, 10, 30, 100	母動物:30	母動物:100	母動物:体重増加抑
		0, 10, 90, 100	胎児:100	胎児:-	制
	発生毒性		дн / ц · тОО	/4H/L •	胎児:毒性所見なし
	試験				
	H . 19/1				(催奇形性は認められ
					ない)
				<u> </u>	

	1				T	
動物種	試験	投与量	無毒性量	最小毒性量	備考	
	p. 149/1	(mg/kg 体重/日)	(mg/kg 体重/日)	(mg/kg 体重/日)		
マウス		0, 100, 500,	雄:81.6	雄:630	雌雄:Chol 増加、肝	
	90 日間	4,000, 7,000 ppm	雌:846	雌:1,480	絶対及び補正重量増	
	亜急性	雄:0、17.5、81.6、			加等	
	毒性試験	630、1,160				
	毋注武歌	雌:0、20.4、106、				
		846、1,480				
		0, 75, 375, 2,250	雄:45.4	雄:288	雌雄:体重増加抑制、	
		ppm	雌:48.4	雌:306	摂餌量減少等	
	80週間発	雄:0、9.2、45.4、				
	がん性試	288				
	験	雌:0.9.7、48.4、			(雄で肝細胞腺腫及び	
		306			癌の発現頻度増加)	
ウサギ		0, 10, 100, 500	母動物:500	母動物:-	母動物及び胎児:毒	
	発生毒性		胎児:500	胎児:-	性所見なし	
	光生母性					
	时间火				(催奇形性は認められ	
					ない)	
イヌ	90 日間	0, 30, 300, 1,000	雌雄:30	雌雄:300	雄:ALP 及び TG 増	
	亜急性				加等	
	毒性試験				雌:体重減少/増加抑	
	毋江州				制	
	1年間	0, 30, 100, 300	雌雄:100	雌雄:300	雌雄:肝絶対、比及	
	慢性毒性				び補正重量増加等	
	試験					
	* **		NOAEL: 9.9			
ADI			NOAEL: 9.9 SF: 100			
	A	D1	ADI: 0.099			
	ΔDI設定	· 根	ラット2年間慢性毒性/発がん性併合試験			
ADI 設定根拠資料					口 叶心吹	

ADI: 許容一日摂取量、NOAEL: 無毒性量、SF: 安全係数

-:最小毒性量は設定できなかった。

表 71 単回経口投与等により生ずる可能性のある毒性影響等

		投与量	無毒性量及び急性参照用量設定に関連する
動物種	試験	(mg/kg 体重又は	エンドポイント 1)
		mg/kg 体重/日)	(mg/kg 体重又は mg/kg 体重/日)
	一般薬理試験	雌:0、100、300、	100
	(一般状態)	2,000	
			雌雄: 異常歩行、異常姿勢等
	一般薬理試験	雌:0、100、300、	
	(自発運動量)	2,000	
		4.0	自発運動量減少
	一般薬理試験	雌:0、100、300、	100
	(体温)	2,000	Hara to the
		11444	体温低下
ラット		雌雄:0、100(雌)、	雄:300
	急性神経毒性	300(雄)、1,000、 2,000	雌:100
	試験①	2,000	 雄:体重減少/増加抑制
			雌:自発運動量減少等
		雌:0、100、300、	100
	急性神経毒性	1,000	
	試験②	,	 自発運動量減少及び体温低下
		雌:0、10、30、100	
	発生毒性試験		
			母動物:体重増加抑制
			NOAEL: 30
	ARfD)	SF: 100
			ARfD: 0.3
	ARfD 設定框	是拠資料	ラット発生毒性試験

ARfD: 急性参照用量、NOAEL: 無毒性量、SF: 安全係数

-: 無毒性量は設定できなかった。 1): 最小毒性量で認められた主な毒性所見を記した。

<別紙1:代謝物/分解物略称>

	:代謝物/分解物略称>
記号	化学名
Ah	ピジフルメトフェンのヒドロキシ体
Ah1	3-(difluoromethyl)- N -[hydroxyl-1-methyl-2-(2,4,6-trichlorophenyl)ethyl]- N -methoxy-1-methylpyrazole-4-carboxamide
Ah2	3-(difluoromethyl)-N-methoxy-1-methyl-N-[1-methyl-2-(2,4,6-trichloro-3-hydroxyphenyl)ethyl]pyrazole-4-carboxamide
Ad	ピジフルメトフェンのジヒドロキシ体
Ah-sul	Ah の硫酸抱合体
Ah-glu	Ah のグルクロン酸抱合体
Ad-glu	Ad のグルクロン酸抱合体
В	3-(difluoromethyl)-1-methyl- N [1-methyl-2-(2,4,6-trichlorophenyl)ethyl] pyrazole-4-carboxamide
Bh	Bのヒドロキシ体
-	Bのフェニルエチル部位のヒドロキシ体
Bh1	
C	3-(difluoromethyl)- N -methoxy- N -[1-methyl-2-(2,4,6-trichlorophenyl)ethyl]- $1H$ -pyrazole-4-carboxamide
Cla	T <i>H</i> -pyrazole-4-carboxamide Cのヒドロキシ体
Ch Ch1	Cのフェニルエチル部位のヒドロキシ体
C-glu	Cのグルクロン酸抱合体
Ch-sul	Ch の硫酸抱合体
Ch-glu	Ch のグルクロン酸抱合体
Cli giu	3-(difluoromethyl)-N-hydroxy-1-methyl-N-[1-methyl-2-(2,4,6-trichlorophenyl)
D	ethyl]pyrazole-4-carboxamide
D-glu	Dのグルクロン酸抱合体
E	N[2-(2,6-dichloro-4-hydroxy)-phenyl-1-methyl-ethyl]-3-(difluoromethyl)- N -
15	methoxy-1-methylpyrazole-4-carboxamide
F	3-(difluoromethyl)-1-methylpyrazole-4-carboxamide
G	3-(difluoromethyl)-1-methyl-1 <i>H</i> -pyrazole-4-carboxylic acid
Н	2,4,6-trichlorophenol
H-sul	2,4,6-trichlorophenyl sulfate
H-glu	3,4,5-trihydroxy-6-(2,4,6-trichlorophenoxy)oxane-2-carboxylic acid
I	2,4,6-trichloro-3-hydroxyphenol
I-sul	2,4,6-trichloro-3-hydroxyphenyl sulfate
J	3-(difluoromethyl)- N -(2-hydroxy-1-methylethyl)- N -methoxy-1-methylpyrazole-4-carboxamide
J-glu	Jのグルクロン酸抱合体
K	2,4,6-trichlorobenzyl alcohol
K-glu	3,4,5-trihydroxy-6-(2,4,6-trichlorobenzoxy)oxane-2-carboxylic acid
L	2-{[3-(difluoromethyl)-1-methylpyrazole-4-carbonyl]-methoxy-amino}propanoic acid
M	N-[2-(2,4-dichlorophenyl)-1-methylethyl]-3-(difluoromethyl)-N-methoxy-1-methylpyrazole-4-carboxamide
Mh	ピジフルメトフェンの脱クロロ、ヒドロキシ体
Mh1	Mのヒドロキシ体
Mh2	N-[2-(2,4-dichloro-6-hydroxyphenyl)-1-methylethyl]-3-(difluoromethyl)- N -methoxy-1-methylpyrazole-4-carboxamide

記号	化学名
Md	ピジフルメトフェンの脱クロロ、ジヒドロキシ体
Md1	M のフェニルエチル部位のジヒドロキシ体
Md2	M のジヒドロキシ体
Mh-glu	Mh のグルクロン酸抱合体
Md-glu	Md のグルクロン酸抱合体
Md2-cys	Md2 のシステイン抱合体
N	2-{[3-(difluoromethyl)-1-methylpyrazole-4-carbonyl]- amino}propanoic acid
О	2-[3-(difluoromethyl)-1 H -pyrazole-4-carbonyl]- methoxy-amino]propanoic acid
P	ピジフルメトフェンの脱クロロ、ヒドロキシ、チオメチル体
Ph	Pのヒドロキシ体
P-glu	Pのグルクロン酸抱合体
0	3-(difluoromethyl)- N -(2-hydroxy-1-methylethyl)- N -methoxy-pyrazole-4-
Q	carboxamide
Q-glu	Qのグルクロン酸抱合体
R	Cの脱クロロ、ヒドロキシ体
R-glu	Rのグルクロン酸抱合体
$_{\rm S}$	$3-({\rm difluoromethyl})-N-{\rm hydroxy}-N-[1-{\rm methyl}-2-(2,4,6-{\rm trichlorophenyl}){\rm ethyl}]$
	pyrazole-4-carboxamide
Sh	Sのヒドロキシ体
Sd	Sのジヒドロキシ体
S-glu	Sのグルクロン酸抱合体
Т	ピジフルメトフェンの脱クロロ、デスメチル、ヒドロキシ体
U	ピジフルメトフェンのデスメチル体
Uh	Uのヒドロキシ体
V	3-{[3-(difluoromethyl)-1-methylpyrazole-4-carbonyl]-methoxy-amino}-butanoic
V	acid
W	3-{[3-(difluoromethyl)-1-methylpyrazole-4-carbonyl]amino}-butanoic acid

<別紙2:検査値等略称>

略称	名称
A/G 比	アルブミン/グロブリン比
ai	有効成分量(active ingredient)
ALP	アルカリホスファターゼ
APVMA	オーストラリア農薬・動物用医薬品局
AST	アスパラギン酸アミノトランスフェラーゼ
A III D	[=グルタミン酸オキサロ酢酸トランスアミナーゼ (GOT)]
ATP AUC	アデノシン三リン酸
	薬物濃度曲線下面積5-ブロモ-2`-デオキシウリジン
BrdU	\vec{a} ンジルオキシレゾルフィン- \vec{a} デベンジラーゼ
BROD	ベンジルオキシキノリン-0デベンジラーゼ
BQ CAR	
	恒常性アンドロスタン受容体の同義語(constitutively active receptor) コレステロール
Chol	$6 \cdot (4 \cdot \beta \cup 1) \cup (4 \cdot \beta \cup 1$
CITCO	-O(3,4-5)
C_{max}	最高濃度
CMC	カルボキシメチルセルロース
DMSO	ジメチルスルホキシド
EFSA	欧州食品安全機関
EGF	上皮成長因子
EPA	米国環境保護庁
EROD	エトキシレゾルフィン- <i>O</i> デエチラーゼ
GGT	γ-グルタミルトランスフェラーゼ [=γ-グルタミルトランスペプチダーゼ(γ-GTP)]
Glob	グロブリン
HC	カナダ保険省
JMPR	FAO/WHO 合同残留農薬専門家会議
LC ₅₀	半数致死濃度
LD_{50}	半数致死量
LAH	ラウリン酸 12-水酸化酵素
Lym	リンパ球数
MC	メチルセルロース
Mon	単球数
NADPH	ニコチンアミドアデニンジヌクレオチドリン酸
Neu	好中球数
P450	チトクローム P450
PB	フェノバルビタール (ナトリウム)
PCO	パルミトイル CoA オキシダーゼ
PHI	最終使用から収穫までの日数
PROD	ペントキシレゾルフィン・ $oldsymbol{O}$ デペンチラーゼ
$T_{1/2}$	消失半減期
TAR	総投与(処理)放射能
TCPOBOP	1,4-ビス[2-(3,5-ジクロロピリジロキシ)]ベンゼン
TG	トリグリセリド

T_{max}	最高濃度到達時間
TPO	甲状腺ペルオキシダーゼ
TRR	総残留放射能
UDPGT	ウリジン二リン酸グルクロニルトランスフェラーゼ
WBC	白血球数

<別紙3:作物残留試験成績(国内)>

作物名	計 除 佐田县				残留值((mg/kg)
(栽培形態)	試験	使用量	回数	PHI	ピジフルメトフェン	
(分析部位) 実施年度	ほ場数	(g ai/ha)	(回)	(日)	最大値	平均値
		$183^{ m FL}$	2	7 14 21	0.126 0.084 0.073	0.120 0.082 0.073
小麦 (露地)		$170^{ m FL}$	2	7 14 21	0.368 0.111 0.112	0.358 0.110 0.111
(玄麦) 平成 27 年度	4	171~178 FL	2	7 14 21	0.203 0.156 0.075	0.198 0.155 0.072
		183^{FL}	2	7 14 21	0.203 0.124 0.069	0.198 0.124 0.068
小麦 (露地)	2	183 ^{FL}	2	7 14 21	0.069 0.023 0.022	0.068 0.022 0.022
(玄麦) 平成 28 年度		$170^{ m FL}$	2	7 14 21	0.191 0.100 0.089	0.188 0.098 0.088
大麦 (露地) (玄麦) 平成 28 年度	1	162~179 ^{FL}	2	7ª 14 21	1.66 1.03 0.706	1.65 1.02 0.700
大麦 (露地)	2	183^{FL}	2	7ª 14 21	3.78 0.756 0.340	3.70 0.726 0.340
(玄麦) 平成 27 年度		$171^{ m FL}$	2	7ª 14 21	1.96 1.69 0.902	1.96 1.64 0.900

作物名					残留値((mg/kg)
(栽培形態) (分析部位)	試験 ほ場数	使用量 (g ai/ha)	回数 (回)	PHI (日)	ピジフルメトフェン	
実施年度	13.777.35	(g all lia)	(11)	(H)	最大値	平均值
				7	< 0.01	< 0.01
		$147^{ m FL}$	2	14	< 0.01	< 0.01
		14711	2	21	< 0.01	< 0.01
				28	< 0.01	< 0.01
				7	< 0.01	< 0.01
		138^{FL}	2	14	< 0.01	< 0.01
		199.5	2	21	< 0.01	< 0.01
				28	< 0.01	< 0.01
		$136^{ m FL}$	2	7	< 0.01	< 0.01
				14	< 0.01	< 0.01
温州みかん				21	< 0.01	< 0.01
(施設、露地)	6			28	< 0.01	< 0.01
(果肉)	0	$151^{ m FL}$	L 2	7	< 0.01	< 0.01
令和3年度				14	< 0.01	< 0.01
				21	< 0.01	< 0.01
				28	< 0.01	< 0.01
				7	< 0.01	< 0.01
		$145^{ m FL}$	2	14	< 0.01	< 0.01
		140	<u> </u>	21	< 0.01	< 0.01
				28	< 0.01	< 0.01
				7	< 0.01	< 0.01
		$145^{ m FL}$	2	14	< 0.01	< 0.01
		140	4	21	< 0.01	< 0.01
				28	< 0.01	< 0.01

作物名		(古田昌)			残留値(mg/kg)
(栽培形態) (分析部位)	試験 ほ場数	使用量 (g ai/ha)	回数 (回)	PHI (日)	ピジフルメトフェン	
実施年度	は物数	(g al/lia)		(1)	最大値	平均値
				7	0.92	0.90
		1 4 EE		14	0.75	0.74
		$147^{ m FL}$	2	21	0.77	0.76
				28	0.93	0.90
				7	0.67	0.66
		100 FI	0	14	0.51	0.50
		138^{FL}	2	21	0.49	0.48
				28	0.46	0.46
				7	0.34	0.34
		100 FI	0	14	0.28	0.27
温州みかん		136^{FL}	2	21	0.27	0.26
(施設、露地)				28	0.25	0.25
(果皮)	6			7	0.78	0.76
令和3年度		$151^{ m FL}$	2	14	0.65	0.64
				21	0.62	0.62
				28	0.58	0.56
		$145^{ m FL}$	2	7	1.39	1.38
				14	1.13	1.12
				21	1.07	1.07
				28	0.99	0.98
		$145^{ m FL}$	2	7	1.01	1.00
				14	0.70	0.70
				21	0.69	0.68
				28	0.63	0.62
かぼす				7	0.21	0.21
(露地)	1	1 E OFI	0	14	0.18	0.18
(果実)	1	$158^{ m FL}$	2	21	0.12	0.12
令和2年度				28	0.06	0.06
すだち				7	0.15	0.15
(露地)	1	150FI	0	14	0.14	0.14
(果実)	1	$159^{ m FL}$	2	21	0.12	0.12
令和2年度				28	0.12	0.12
ゆず				7	0.10	0.10
(露地)	1	150FI	0	14	0.09	0.09
(果実)	1	$159^{ m FL}$	2	21	0.08	0.08
令和2年度				28	0.06	0.06

作物名					残留值(mg/kg)		
(栽培形態) (分析部位)	試験 ほ場数	使用量 (g ai/ha)	回数 (回)	PHI (日)	ピジフルメトフェン		
実施年度	(本勿致	(g al/lia)		(1)	最大値	平均値	
		$165^{ m FL}$	2	1 3 7	0.35 0.34 0.03	0.34 0.34 0.03	
りんご (露地) (果実) 令和 2 年度	3	$153^{ m FL}$	2	1 3 7	0.46 0.42 0.40	0.46 0.42 0.40	
		$171^{ m FL}$	2	1 3 7	0.15 0.10 0.10	0.15 0.10 0.10	
りんご (露地) (果実) 令和3年度	3	$165^{ m FL}$	2	1 3 7	0.16 0.15 0.12	0.16 0.15 0.12	
		$160^{ m FL}$	2	1 3 7	0.32 0.30 0.29	0.32 0.29 0.29	
		$153^{ m FL}$	2	1 3 7	0.18 0.21 0.15	0.18 0.20 0.14	

FL: フロアブル剤

[・]農薬の使用時期 (PHI) が、登録又は申請された使用方法から逸脱している場合は、PHI に a を付した。

<別紙4:作物残留試験成績(海外)>

作物名					残留值(mg/kg)
(国)	試験	使用量	回数	PHI	ピジフルメトフェン
(分析部位)	ほ場数	(g ai/ha)	(回)	(日)	(最大値)
実施年				20	0.07
				23	0.12
				45	0.02
				44, 48, <u>53</u> , 58, 62	0.06
				29	0.04
				33	0.07
				32	0.05
				33	0.19
小麦				16	0.12
(米国)	00	$150^{ m FL}$		52	0.07
(玄麦)	20	$^+$ 200^{FL}	2	22	0.09
2015年		20012		29	0.05
				16	0.16
				47	0.04
				21, 27, 32, 36, <u>42</u>	0.13
				19	0.22
				40	0.06
				28	0.10
				33	0.08
				74	0.02
				20	0.17
				23	0.11
				45	0.05
				53	0.05
				29	0.03
				33	0.11
				32	0.04
				33	0.12
小麦		$150{\rm ^{EC}}$		16 52	0.15 0.04
(米国) (玄麦)	20	+	2	22	0.04
2015年		$200{\rm EC}$		29	0.10
2010				16	0.18
				47	0.06
				32	0.09
				19	0.23
				40	0.06
				28	0.12
				33	0.16
				74	< 0.01

作物名					残留值(mg/kg)	
(国)	試験	使用量	回数	PHI	ピジフルメトフェン	
(分析部位) 実施年	ほ場数	(g ai/ha)	(回)	(目)	(最大値)	
				41	0.12	
				39	0.06	
				38	0.06	
小麦 (カナダ)				48	0.07	
		1 F O EV		44	0.06	
	10	$150^{ m FL}$	0	44	0.04	
(玄麦)	12	$^+$ 200^{FL}	2	41	0.10	
2015年		200 11		47	0.03	
				40	0.03	
				46	0.12	
				48	0.06	
				45	0.04	
				29、36、41、 <u>47</u> 、51	0.23	
小麦				39	0.05	
	13			38	0.04	
				48	0.06	
				44	0.04	
		150 EC + 200 EC	2	44	0.02	
(カナダ)				41	0.10	
(玄麦)				47	0.02	
2015年				40	0.04	
				56	0.12	
				46	0.04	
				48	0.06	
				<u>35</u> , 40, 45, 49, 54	0.05	
				36	0.82	
					49, 54, 59, 63, 68	0.52
				21	1.1	
				28	1.7	
大麦		150 FI		16	1.9	
(米国)	12	150^{FL} +	2	27	0.43	
(玄麦)	12	$200^{ m FL}$	2	52	0.08	
2015年		20012		24, 29, <u>34</u> , 39, 45	0.26	
				45	0.04	
				21	2.6	
				26	0.59	
				44	0.19	
				26	0.59	

作物名					残留值(mg/kg)
(国) (分析部位)	試験 ほ場数	使用量 (g ai/ha)	回数 (回)	PHI (目)	ピジフルメトフェン (最大値)
実施年					
				36	0.76
				59	0.18
				21	0.98
				28	3.0
大麦		$150\mathrm{EC}$		16	1.9
(米国)	12	+	2	27	0.22
(玄麦)		$200{ m EC}$		52	0.08
2015 年				34	0.31
				45	0.08
				21	2.2
				26	0.72
				44	0.10
	9	150 ^{FL} + 200 ^{FL}	2	36	0.55
				47	0.20
I . - -				42	0.09
大麦				41	0.46
(カナダ) (玄麦)				50	0.23
2015 年				40	0.15
2015 +				48	0.58
				42	0.07
				48	0.11
				36	0.46
				47	0.11
				42	0.20
大麦		$150\mathrm{EC}$		41	0.66
(カナダ) (カナダ)	9	+	2	50	0.15
(玄麦) 2015 年		$200\mathrm{EC}$		40	0.14
				48	0.30
				31, 38, <u>42</u> , 46, 51	0.06
				38, 43, 48, <u>52</u> , 57	0.07

作物名 (国)	試験	使用量	回数	РНІ	残留値(mg/kg) ピジフルメトフェン	
(分析部位) 実施年	ほ場数	(g ai/ha)	(回)	(日)	(最大値)	
				30	0.08	
				43	0.39	
				18	0.08	
				28	0.14	
				22	0.21	
				24, 29, <u>34</u> , 39, 44	0.06	
オート麦		$150\mathrm{FL}$		7, <u>11</u> , 16, 21, 25	0.30	
(米国)	16	+	2	46	0.10	
(玄麦)	10	$200^{ m FL}$		23	2.1	
2015年		200		33	< 0.01	
				19	0.73	
				16	1.3	
			-	52	0.24	
				29	0.39	
				27	0.42	
				28	0.20	
				30	0.12	
				43	0.51	
				18	0.08	
				28	0.12	
				22	0.16	
				34	0.06	
オート麦		1 7 O FC		16	0.27	
(米国)	16	150 EC +	2	46	0.14	
(玄麦)	10	$200{}^{ m EC}$	2	23	1.5	
2015年		200		33	0.41	
				19	0.94	
				16	1.5	
				52	0.24	
			-	29	0.48	
				27	0.54	
				28	0.36	

作物名					残留值(mg/kg)
(国)	試験	使用量	回数	PHI	ピジフルメトフェン
(分析部位) 実施年	ほ場数	(g ai/ha)	(回)	(目)	(最大値)
				40	0.17
				28	0.68
				51	0.13
				37	0.59
オート麦		$150^{ m FL}$		54	0.09
(カナダ)	12	+	2	39	0.44
(玄麦)	12	$200^{ m FL}$	4	52	0.14
2015年		200		46	0.22
				36	0.14
				56	0.28
				61	0.19
				42	0.11
				40	0.23
				28	0.66
				51	0.15
				37	0.66
オート麦		$150\mathrm{EC}$		54	0.09
(カナダ)	12	+	2	39	0.26
(玄麦)	12	200^{EC}		52	0.20
2015年		200		36、42、46、 <u>51</u> 、56	0.16
				36	0.15
				56	0.32
				61	0.18
				33, 38, <u>42</u> , 47, 53	0.09

作物名					残留值(mg/kg)
(国)	試験	使用量	回数	PHI	ピジフルメトフェン
(分析部位) 実施年	ほ場数	(g ai/ha)	(回)	(目)	(最大値)
,				28	<0.01
				28	< 0.01
				31	< 0.01
				31	< 0.01
				28	< 0.01
				31	< 0.01
				31	<0.01
				29	< 0.01
飼料用		4.0 × EV		28	< 0.01
とうもろこし (火国)	90	$125^{ m FL}$	9	28	<0.01
(米国) (子実)	20	$^+$ $125^{ m FL}$	2	30	< 0.01
2015年		12012		31	< 0.01
2010				30	<0.01
				30	< 0.01
				29	< 0.01
				32	< 0.01
				30	0.01
				<i>19</i> , <i>25</i> , 29, <u>33</u> , 38	< 0.01
				<i>20</i> , <i>26</i> , <u>30</u> , 34, 40	< 0.01
					< 0.01
				28	< 0.01
				28	< 0.01
				31	< 0.01
				31	< 0.01
				28	< 0.01
				31	< 0.01
				31	< 0.01
America I I I I				29	< 0.01
飼料用		10× E0		28	< 0.01
とうもろこし (米国)	90	125^{EC}	2	28	< 0.01
(子実)	20	$^+$ 125^{EC}	2	30	< 0.01
2015年		120		31	< 0.01
				30	<0.01
				30	< 0.01
				29	< 0.01
				32	<0.01
				30	< 0.01
				29	< 0.01
				30	< 0.01
				20, 24, 29, 35, 42	< 0.01

作物名					残留值(mg/kg)
(国)	試験	使用量	回数	PHI	ピジフルメトフェン
(分析部位)	ほ場数	(g ai/ha)	(回)	(日)	(最大値)
実施年					
ポップコーン (米国)		$150\mathrm{FL}$		31	<0.01
(子実)	3	+	2	30	< 0.01
2015年		$150\mathrm{FL}$		28	< 0.01
ポップコーン		150 EC		31	<0.01
(米国)	3	+	2	30	<0.01
(子実)		$150\mathrm{EC}$	_	28	<0.01
2015年				7	<0.01
				1, 3, <u>7</u> , 10, 14	<0.01
				7	<0.01
				6	<0.01
未成熟				7	<0.01
とうもろこし		$125^{ m FL}$		1, 3, <u>7</u> , 10, 15	<0.01
(米国)	12	+	2	8	<0.01
(子実+穂軸)		$125^{ m FL}$		7	<0.01
2015年				7	<0.01
				7	<0.01
				7	<0.01
				7	< 0.01
				14	< 0.01
				14	0.02
				14	< 0.01
				14	< 0.01
				14	0.03
				7, 10, 14, 18, <u>21</u>	0.37
				14	0.29
				14	0.01
だいず				14	0.09
(米国)		$200\mathrm{FL}$		14	0.06
(子実)	21	+	2	14	0.01
2015年		$200\mathrm{FL}$		14	0.03
				14	0.03
				14	0.01
				14	0.04
				7 10 14 19 91	0.03
				7, 10, 14, 18, <u>21</u>	0.02
				14	<0.01
				14	0.01
				14	0.03
				14	บ.บอ

作物名					残留值(mg/kg)
(国)	試験	使用量	回数	PHI	ピジフルメトフェン
(分析部位) 実施年	ほ場数	(g ai/ha)	(回)	(目)	(最大値)
<u> </u>				14	<0.01
				14	<0.01
				14	<0.01
				7, 10, <u>14</u> , 18, 21	< 0.01
				14	0.01
				14	0.17
				14	0.13
				14	< 0.01
だいず				14	0.06
(米国)		$200\mathrm{EC}$		14	0.05
(子実)	21	+	2	14	0.04
2015年		$200\mathrm{EC}$		14	0.01
·				14	0.02
				14	<0.01
			2	14	0.02
				14	0.01
				7 10 14 10 01	0.02
		200 ^{FL} +		7, 10, <u>14</u> , 18, 21	<0.01
				14	<0.01 0.03
				14	0.03
				14	0.06
えんどう				14	0.04
(米国)	5			14	0.05
(乾燥子実)	0	$200\mathrm{FL}$	2		0.09
2015 年		200		7, 10, <u>14</u> , 17, 21	
				14	0.06
えんどう		FG		14	0.05
(米国)	_	200 EC	9	14	0.04
(乾燥子実)	5	+ 200 ^{EC}	2	14	0.06
2015 年		200 EC		14	0.10
				14	0.02
えんどう				14	0.05
(カナダ)		$200\mathrm{FL}$	_	15	0.06
(乾燥子実)	5	+	2	15	0.03
2015年		$200^{ m FL}$		15	0.05
				14	0.02
えんどう				14	0.03
(カナダ)		$200\ ^{\mathrm{EC}}$		15	0.06
(乾燥子実)	5	+	2	15	0.01
2015年		$200{\rm ^{EC}}$		15	0.02
·				7, 10, 14, 17, <u>21</u>	0.02

作物名 (国) (分析部位) 実施年	試験 ほ場数	使用量 (g ai/ha)	回数 (回)	РНІ (日)	残留値(mg/kg) ピジフルメトフェン (最大値)
豆類 (米国) (乾燥子実) 2015 年	5	200 ^{FL} + 200 ^{FL}	2	7, 10, <u>14</u> , 17, 21 14 14 14 14	<0.01 0.24 0.06 <0.01 <0.01
豆類 (米国) (乾燥子実) 2015 年	5	200 EC + 200 EC	2	14 14 14 14 14	<0.01 0.22 0.03 0.02 <0.01
豆類 (カナダ) (乾燥子実) 2015 年	5	200 FL + 200 FL	2	14 15 14 15 15	<0.01 <0.01 <0.01 0.01 0.09
豆類 (カナダ) (乾燥子実) 2015 年	5	200 EC + 200 EC	2	7, 10, 14, 17, 21 15 14 15 15	<0.01 <0.01 <0.01 <0.01 0.10
らっかせい (米国) (仁) 2015 年	12	50 FL + 50 FL + 50 FL + 50 FL	4	14 14 14 7, 10, 14, 17, 21 14 14 15 14 12 14 14 15 15 14 15 15 15 15	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

作物名					残留值(mg/kg)
(国)	試験	使用量	回数	PHI	ピジフルメトフェン
(分析部位)	ほ場数	(g ai/ha)	(回)	(目)	(最大値)
実施年					
				7, 10, 14, 17, 21	<0.01
				14	<0.01
		$50{ m EC}$		14	0.02
		+		14	<0.01
らっかせい		$50 ^{\mathrm{EC}}$		14	<0.01
(米国)	12	+	4	15	<0.01
(仁)		$50 ^{\mathrm{EC}}$	_	14	<0.01
2015年		+		12	<0.01
		$50{ m EC}$		14	<0.01
				14	0.01
				15	<0.01
				15	0.01
				7	< 0.01
				7	< 0.01
				6	< 0.01
				7	< 0.01
				7	<0.01
		$117^{ m FL}$		<i>0</i> , <i>3</i> , <u>7</u> , 14	< 0.01
ばれいしょ		+		7	<0.01
(米国)	16	$^+$ 117^{FL}	3	7	< 0.01
(塊茎)	10	+	Э	7	< 0.01
2015年		$117^{ m FL}$		6	< 0.01
		117		6	< 0.01
				7	< 0.01
				6	< 0.01
				7	< 0.01
				0, 3, <u>8</u> , 14	< 0.01
				6	< 0.01
				6	< 0.01
				6	< 0.01
		10× PI		0, 3, 7, 10, <u>14</u>	< 0.01
ばれいしょ		$125^{ m FL}$		7	< 0.01
(カナダ)	10	+ 105 FI	0	7	< 0.01
(塊茎)	10	125^{FL}	3	0, 3, 7, 11, <u>13</u>	< 0.01
2015年		$^+$ 125^{FL}		7	< 0.01
		120 11		7	< 0.01
				7	< 0.01
				7	< 0.01

作物名					残留值(mg/kg)
(国)	試験	使用量	回数	PHI	ピジフルメトフェン
(分析部位)	ほ場数	(g ai/ha)	(回)	(日)	(最大値)
実施年					
				7	0.06
				7	0.04
てんさい				0, 7, 14, 21, <u>28</u>	0.08
(米国)				7	0.04
(根部)	9	$75^{ m FL}$	<u>4</u>	7	0.17
2018年				7	0.09
2010				7	0.06
				7	0.06
				7	0.02
				7	0.10
				7	0.02
てんさい				7	0.15
(カナダ)	8	$75^{ m FL}$	<u>4</u>	0, 7, <u>13</u> , 21, 29	0.06
(根部)	0	75	<u>±</u>	7	0.09
2018年				7	0.15
			7 7 7		0.09
				7 7 7	0.10
				7	1.02
				7	6.37
てんさい				0, 7, <u>14</u> , 21, 28	5.68
(米国)				7	1.59
(葉部)	9	$75^{ m FL}$	<u>4</u>	7	2.08
2018年				7	0.83
2016 +				7	0.94
				7	1.26
				7	8.05
				7	1.1
				7	1.6
てんさい				7	1.6
(カナダ)	0	$75^{ m FL}$	4	0, <u>7</u> , 13, 21, 29	1.5
(葉部)	8	1911	4	7	1.6
2018年				7	3.7
				7	0.98
				7	3.8
==				7	0.15
ラディッシュ				7	0.18
(米国)	5	$75^{ m FL}$	<u>4</u>	7	0.17
(根部) 2018 年				7	0.01
2018 +				7	0.03

作物名					残留値(mg/kg)
(国)	試験	使用量	回数	PHI	ピジフルメトフェン
(分析部位) 実施年	ほ場数	(g ai/ha)	(回)	(目)	(最大値)
ラディッシュ				7	5.57
(米国)				7	3.24
(葉部)	5	$75^{ m FL}$	$\underline{4}$	7	3.10
2018年				7	0.94
				7	0.14
				<u>0</u> , 3, 7, 10, 14	1.20
キャベツ				0	0.39
(米国)	6	$125^{ m FL}$	<u>3</u>	0	0.43
(茎葉) 2018 年				0	1.09
2016 4				0 0	0.36
				0	0.34
カリフラワー				0	0.37
(米国)	4	$125^{ m FL}$	<u>3</u>	0, 3, 7, 9, 13	0.07
2018年				0, 9, 1, 5, 19	0.04
					1.51
ブロッコリー					0.70
(米国)	4	$125^{ m FL}$	<u>3</u>		0.43
2018年				0 0 0 0 0, 4, 7, 10, 14 0 0	1.04
_					0.78
				0	2.3
レタス		200 FI		0	2.4
(米国)	0	$200^{ m FL}$	0	0	0.51
(茎葉)	8	$^+$ $200^{ m FL}$	2	0	2.6
2015年		200 11		0	4.5
				0	1.2
				0	3.0
				0	4.4
				0	5.5
リーフレタス		$200^{ m FL}$		0	1.7
(米国)	8	+	2	0	7.7
(茎葉)	O	$200\mathrm{FL}$	_	0	3.5
2015年				<u>0</u> , 1, 3, 7, 10	9.7
				0	11
				0	12
				7	0.13
				7	<0.01
たまねぎ				7	<0.01
(米国)	8	$125^{ m FL}$	<u>3</u>	6	0.05
(鱗茎) 2018 年				6	0.06
2018 *+				0, 3, 7, <u>10</u> , 14	0.01
				8 7	0.06
			<u> </u>	1	0.06

作物名					残留值(mg/kg)
(国) (分析部位) 実施年	試験 ほ場数	使用量 (g ai/ha)	回数 (回)	PHI (目)	ピジフルメトフェン (最大値)
ねぎ				7	0.39
(米国)		10F FI			1.32
(茎葉)	4	$125^{ m FL}$	<u>3</u>	7	0.30
2018年				7	0.36
				7	0.08
にんじん				7	0.06
(米国)	6	$75^{ m FL}$	4		0.11
(根部)	Ü	.0	_		0.02
2018年					0.03
					0.10
					0.11
カンタロープ		$125^{ m FL}$			0.16
(米国) (果実)	6	+	2		0.07
2015 年		$125^{ m FL}$			0.15 0.08
2015 4					0.08
					0.05
		202 FL +	1+2		0.17
カンタロープ					0.06
(米国)					0.11
(果実)	8				0.12
2020年		101^{FL}			0.06
					0.06
				0	0.15
				0	9.2
				0	13
ほうれんそう				0	16
(米国)	_	$200\mathrm{FL}$		0	13
(茎葉)	8	$^+$ $200^{ m FL}$	$\frac{2}{2}$	0	14
2015年		20011		0	12
			(E) (H) (H) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	7.5	
				(H) 7 0, 3, 7, 10, 14 7 7 7 7 7 7 7 0, 7, 14, 21, 28 7 0 0 0 0 0 0 0 0 0 0 0 0	9.7
					4.8
					5.4
, ,,					3.9
セロリ (米国)		$200\mathrm{FL}$			4.3
(苯国)	8	+	2		4.5
2015 年		$200^{ m FL}$			
					2.6
					2.7
				0	8.1

作物名					残留值(mg/kg)
(国)	試験	使用量	回数	PHI	ピジフルメトフェン
(分析部位) 実施年	ほ場数	(g ai/ha)	(回)	(日)	(最大値)
J (// L)				0	0.08
				0	0.11
				0	0.27
				0	0.28
トマト				0	0.08
(米国)	10	$125^{ m FL}$		0	0.08
(果実)	12	$^+$ $125^{ m FL}$	2	0	0.16
2015 年		120		0	0.20
				0, 3, 7, 10, 14	0.23
				0、3、7、 <u>10</u> 、14	0.08
				0	0.04
				0	0.13
		125 FL +	i/ha) (国) (日) (日) (日) (日) (日) (日) (日) (日)	0	0.08
ピーマン				0	0.37
(米国)				0	0.17
(果実)	6			0	0.06
2015 年		120		0	0.26
				<u>0</u> , 3, 7, 11, 14	0.08
とうがらし				0	0.09
(米国)	3	$125^{ m FL}$	9	0	0.14
(果実)	Э	$125^{ m FL}$	2	0	0.26
2015年				<u>0</u> , 1, 2, 6, 9	0.17
				0	0.14
				0	0.11
					0.11
きゅうり		$125^{ m FL}$			0.16
(米国)	10	+	2		0.11
(果実) 2015 年		$125{}^{\rm FL}$			0.26
2010 +					0.12 0.11
					0.11
					0.19

作物名					残留值(mg/kg)
(国)	試験	使用量	回数	PHI	ピジフルメトフェン
(分析部位) 実施年	ほ場数	(g ai/ha)	(回)	(目)	(最大値)
				0	0.13
				0	0.13
				0	0.10
きゅうり				0	0.14
(米国)	10	$202^{ m FL}$	1.0	0	0.06
(果実)	10	$^+$ 101^{FL}	<u>1+2</u>	0	0.08
2020年		101		0	0.12
				0	0.06
				0	0.07
				0	0.11
				0	0.16
サマースカッ				0	0.06
シュ		$125^{ m FL}$		0	0.10
(米国)	6	+	2	0	0.21
(果実)		$125^{ m FL}$		0	0.18
2015 年				0, 1, 4, 6, 9	0.06
				0	0.14
				0	0.08
サマースカッ		909 FI		0	0.12
シュ	0	$202^{ m FL}$	1+0	0	0.13
(米国) (果実)	8	$^+$ 101^{FL}	<u>1+2</u>	0	0.06
2020年		10112		0	0.03
2020 +				0	0.13
				0	0.05
				15	0.08
いんげん				14	0.02
(米国)	0	202 F		14	0.04
(未成熟種実)	6	$202^{ m FL}$	<u>2</u>	14	0.02
2018年				0, 7, <u>14</u> , 21, 27	0.01
				14	0.01
				14	0.02
いんげん				14	0.03
(米国)		20C FI	_	14	0.19
(未成熟さや)	6	$202^{ m FL}$	<u>2</u>	13	0.09
2018年				0, 7, <u>14</u> , 21, 28	0.02
				14	0.03

作物名					残留值(mg/kg)
(国)	試験	使用量	回数	PHI	ピジフルメトフェン
(分析部位)	ほ場数	(g ai/ha)	(回)	(目)	(最大値)
実施年					
				14	0.01
えんどう				14	< 0.01
(米国)	6	$202^{ m FL}$	<u>2</u>	0, 7, 15, 21, <u>28</u>	0.01
(未成熟種実)	O	202	_	14	0.02
2018年				14	< 0.01
				15	< 0.01
えんどう				14	0.01
(米国)	3	$202^{ m FL}$	<u>2</u>	0, 7, <u>14</u> , 21, 28	0.84
(未成熟さや) 2018 年)	_ = 0 _	=	14	0.05
タンジェリン				0	0.60
(米国)	4	$84^{ m FL}$	4	0	0.28
(果実)	4	04 11	$\frac{4}{}$	0	0.25
2018年				0	0.19
	10	84 FL	4	0	0.31
				0	0.29
				0	0.18
オレンジ				0	0.76
(米国)				0、7、 <u>14</u> 、20、28	0.24
(果実)	10	0412	4	0	0.51
2018年				0、7、 <u>14</u> 、21、28	0.21
				0	0.23
				0	0.12
				0, 7, 14, 21, 28 14 0 0 0 0 0 0 0 0 0 0, 7, 14, 20, 28 0	0.44
				0	0.17
グレープフルー				0	0.17
ツ				0	0.65
(米国)	7	$84~^{ m FL}$	<u>4</u>	0	0.14
(果実)				0	0.13
2018年				0	0.10
				0	0.16
				0	0.42
レモン				0	0.53
(米国)	6	$84^{ m FL}$	4	0	0.31
(果実)	Ü	0411	$\frac{4}{}$	0	0.32
2018年				0	0.04
				0	0.15

作物名					残留值(mg/kg)
(国)	試験	使用量	回数	PHI	ピジフルメトフェン
(分析部位)	ほ場数	(g ai/ha)	(回)	(目)	(最大値)
実施年					(双八胆)
				0, <u>29</u>	0.09
				0, <u>29</u>	0.09
				0, <u>28</u>	0.13
				0, <u>29</u>	0.09
りんご				0, 3, 7, 10, 14, 30	0.05
(米国)	12	$50^{ m FL}$	<u>4</u>	0, <u>30</u>	0.06
(果実)	12	00	<u> </u>	0, <u>30</u>	0.09
2017年				0, <u>29</u>	0.05
				<i>O</i> , <u>30</u>	0.12
				<i>O</i> , <u>30</u>	0.07
				0, <u>30</u>	0.02
				0, <u>30</u>	0.02
				0, <u>29</u>	0.02
なし				0, <u>30</u>	0.08
(米国)		▼ O EI		0, 3, 7, 10, 14, 30	0.10
(果実)	6	$50\mathrm{FL}$	<u>4</u>	0, <u>30</u>	0.06
2017年				0, <u>29</u>	0.04
				O, 30	0.06
				0	0.29
				0	0.21
				0	0.26
\$ 5				<u>0</u> , 6, 13, 20, 27	0.23
(米国)	9	$75^{ m FL}$	<u>4</u>	0	0.25
(果実)			_	0	0.25
2018年				0	0.25
				0	0.09
				0	0.20
				0	0.26
55				0, 1, <u>3</u> , 7, 10	0.24
(カナダ)	5	$75^{ m FL}$	<u>4</u>	0	0.81
(果実)			_	0	0.73
2018年				0	0.21
				0	0.35
プラム				0, <u>6</u> , 13, 20, 27	0.15
(米国)	_			0	0.18
(果実)	6	$75^{ m FL}$	4	0	0.37
2018年				0	0.07
				0	0.17
プラム				0	0.12
(カナダ)				0, 1, 2, 6, 9	0.17
(果実)	3	$75^{ m FL}$	$\frac{4}{2}$		
2018年				0	0.23

作物名					残留値(mg/kg)	
(国)	試験	使用量	回数	PHI	ピジフルメトフェン	
(分析部位)	ほ場数	(g ai/ha)	(回)	(日)	(最大値)	
実施年						
おうとう				0	0.58	
(カナダ) (果実)	5	$75^{ m FL}$	<u>4</u>	0	0.67	
2018年				0	0.94	
				0	0.38	
				0	0.23	
				0, 1, <u>2</u> , 7, 13	0.38	
				0	0.38	
				0	0.45	
1. 5 1 5				0	0.77	
おうとう				0	0.40	
(米国)	13	$75^{ m FL}$	<u>4</u>	0	1.72	
(果実) 2018 年				0	0.54	
2018 4				0	0.15	
				0	0.24	
				0	0.20	
				<u>0</u> , 1, 3, 7, 13	0.20	
				0	0.43	
				0	0.27	
				0	0.51	
				0	0.53	
いちご				<u>0</u> , 1, 3, 7, 10	0.62	
(米国)		4 5 0 FV		0	0.18	
(果実)	8	$150^{ m FL}$	<u>2</u>	0	0.32	
2016年				0	0.10	
				0	0.47	
				0	0.11	
いちご				0	0.20	
(カナダ)	4	1 FO FI	9	0	0.20	
(果実)	4	150^{FL}	<u>2</u>	0	0.22	
2016年				0, 1, 3, 6, 9	0.10	
ブラックベリー				0	0.72	
(米国)	4	1 FO FI	9	0	2.08	
(果実)	4	150^{FL}	<u>2</u>	0, <u>1</u> , 4, 7, 10	1.68	
2021年				0	0.87	
ブラックベリー (カナダ)		1 * 0 F		0	0.87	
(果実) 2021 年	2	150^{FL}	<u>2</u>	0	0.94	

作物名					残留值(mg/kg)	
(国)	試験	使用量	回数	PHI	ピジフルメトフェン	
(分析部位) 実施年	ほ場数	(g ai/ha)	(回)	(日)	(最大値)	
ラズベリー				0	1.51	
(米国)				0	2.63	
(果実)	4	$150\mathrm{FL}$	<u>2</u>	0	0.60	
2021 年				0, <u>1</u> , 2, 6, 11	0.50	
ラズベリー (カナダ)	2	$150\mathrm{FL}$	9	0	1.44	
(果実) 2021 年	2	19011	<u>2</u>	0	1.66	
				0	0.74	
				<u>0</u> , 1, 3, 7, 10	1.01	
ブルーベリー				0	0.88	
(米国)	8	$150^{ m FL}$	<u>2</u>	0	0.69	
(果実)	0	100	<u> </u>	0	0.45	
2017年				0	3.89	
				0	0.75	
				0	0.71	
				91	< 0.01	
ブルーベリー				88	<0.01	
(カナダ)				87	<0.01	
(果実)	7	$56^{ m FL}$	<u>2</u>	81	<0.01	
2018年				77	0.01	
				98	<0.01	
				96	<0.01	
ブルーベリー		$56^{ m FL}$		0	1.2	
(カナダ)	3	+	2+2	0	1.7	
(果実) 2018 年	_	120^{FL}		0	2.2	
ブルーベリー		$56^{ m FL}$		0	1.5	
(カナダ)	カナダ) (果実) 4 + <i>2+2</i>		2+2	0	1.5	
			2,2	0	1.5	
2018年				0, <u>1</u> , 3, 6, 10	0.87	

作物名 (国) (分析部位)	試験 ほ場数	使用量 (g ai/ha)	回数 (回)	PHI (日)	残留値(mg/kg) ピジフルメトフェン
実施年	は物数	(g al/lia)		(4)	(最大値)
				14	0.37
				7, 9, <u>14</u> , 19, 21	0.39
				14	< 0.01
				14	0.16
ぶどう		000 FI		14	0.61
(米国)	12	$200^{ m FL}$	2	14	0.37
(果実)	12	$^+$ $200^{ m FL}$	2	14	0.05
2015年		200		14	0.51
				7, 10, <u>14</u> , 18, 21	0.20
				14	0.30
				14	0.77
				13	0.16
				20, 25, 30, 35, <u>40</u>	0.08
		$202^{ m FL}$		32	0.07
ひまわり			<u>2</u>	29	0.02
(米国)	8			31	0.08
(種子)		202		28	0.02
2018年				<i>21</i> , <i>24</i> , <u>30</u> , 36, 39	0.41
				30	0.15
				28	0.08
ひまわり				33	0.13
(カナダ)	3	$200\mathrm{FL}$	<u>2</u>	30	0.25
(種子) 2018 年			=	28	0.02
				30	0.04
				28	0.02
				33	0.10
				<i>19</i> , <i>25</i> , <u><i>29</i></u> , 34, 39	< 0.01
綿実				30	0.09
(米国)	12	126^{FL}	9	28	0.09
(種子及び綿)	14	120	<u>2</u>	29	0.10
2018年				33	0.32
				<i>20</i> , <i>24</i> , 31, <u>38</u> , 40	0.04
				29	0.14
				30	0.06
				32	< 0.01

作物名					残留值(mg/kg)
(国)	試験	使用量	回数	PHI	ピジフルメトフェン
(分析部位) 実施年	ほ場数	(g ai/ha)	(回)	(目)	(最大値)
				20, <u>25</u> , 30, 35, 40	0.19
				25	0.03
なたね		10× EI		30	0.18
(米国)	0	$125^{ m FL}$		31	0.09
(種子)	8	$^+$ $200^{ m FL}$	2	31	0.03
2015年		20011		29	0.17
				32	0.02
				20, 25, <u>30</u> , 35, 40	0.04
				30	0.05
				25	0.05
なたね		10F FC		30	0.18
(米国)	0	125^{EC} +	2	31	0.10
(種子)	8	200^{EC}	2	31	0.02
2015年		200 EC		29	0.17
				32	0.02
				30	0.02
				29	0.05
				29	0.19
				31	0.69
				31	0.14
. A A 1				30	0.02
なたね		$125^{ m FL}$		29	0.46
(カナダ) (乗っ)	13	+	2	31	0.05
(種子) 2015 年		$200\mathrm{FL}$		30	0.04
2015 4				31	0.09
				30	0.35
				29	0.15
				30	0.10
				30	0.03
				29	0.06
				29	0.05
				31	0.06
				31	0.12
ナナか				<i>21</i> , 25, 30, <u>35</u> , 41	0.03
なたね (カナダ)		$125{}^{\mathrm{EC}}$		29	0.33
(ガラダ) (種子)	13	+	2	31	0.03
2015 年		$200\mathrm{EC}$		30	0.05
2010 +				31	0.07
				30	0.24
				29	0.06
				20, 24, 30, 35, <u>41</u>	0.11
				30	0.01

作物名					残留值(mg/kg)
(国) (分析部位) 実施年	試験 ほ場数	使用量 (g ai/ha)	回数 (回)	PHI (日)	ピジフルメトフェン (最大値)
ペカン				14	<0.01
(米国)				7, 10, <u>14</u> , 17, 21	< 0.01
(種子)	5	$101^{ m FL}$	<u>3</u>	14	0.02
2018年				14	< 0.01
2010				14	< 0.01
アーモンド				7, 10, <u>14</u> , 17, 21	< 0.01
(米国)				14	0.03
(外皮を除いた	5	$101^{ m FL}$	<u>3</u>	14	< 0.01
種子)				14	< 0.01
2018年				14	0.03
				0	28.6
				0	17.6
からし菜				0	14.5
(米国)	8	$202^{ m FL}$	9	0	11.5
(茎葉)	0	20211	<u>2</u>	0	15.1
2018 年				<u>0</u>	21.2
				<u>0</u>	1.14
				0、1、 <u>3</u> 、7、9	5.80

FL:フロアブル剤、EC:乳剤

下線:複数のPHIのうち、最大残留値を認めた日数。 斜体:登録又は申請された適用範囲内ではない試験条件。

<別紙5:畜産物残留試験成績(泌乳牛)>

① 乳汁及び乳製品中残留値

1) 1	11 及 O'FL3					残留値	<u>(μg/g)</u>			
試料	投与群	試料 採取日 (日)		ルメト	I			I	1	V
		()	最大値	平均値	最大値	平均値	最大値	平均值	最大値	平均値
		1		_	_	_	< 0.01	< 0.01	_	_
		3	_	_	_	_	< 0.01	< 0.01	_	_
		5	_	_	_	_	< 0.01	< 0.01	_	_
		7	_	_	_	_	< 0.01	< 0.01	_	
	15 mg/kg	10	_	_	_	_	< 0.01	< 0.01	_	_
	飼料	14		_	_	_	< 0.01	< 0.01	_	_
		17	_	_	_	_	< 0.01	< 0.01	_	_
		21	_	_	_	_	< 0.01	< 0.01	_	_
		24	_	_	_	_	< 0.01	< 0.01	_	_
		28	_	_	_	_	< 0.01	< 0.01		
		1	< 0.01	< 0.01	_	_	< 0.01	< 0.01	_	_
		3	< 0.01	< 0.01	_	_	0.01	< 0.01	_	_
		5	< 0.01	< 0.01	_	_	0.02	0.01	_	_
		7	< 0.01	< 0.01	_	_	0.02	0.02	_	_
乳汁	45 mg/kg	10	< 0.01	< 0.01	_	_	0.02	0.01	_	_
∱ □{	飼料	14	< 0.01	< 0.01	_	_	0.02	0.02	_	_
		17	< 0.01	< 0.01	_	_	0.02	0.01	_	_
		21	< 0.01	< 0.01	_	_	0.02	0.01	_	_
		24	< 0.01	< 0.01	_	_	0.02	0.02	_	_
		28	< 0.01	< 0.01	_	_	0.02	0.01	_	_
		1	< 0.01	< 0.01	ND	ND	0.06	0.06	< 0.01	< 0.01
		3	0.01	0.01	ND	ND	0.09	0.09	< 0.01	< 0.01
		5	0.01	0.01	< 0.01	< 0.01	0.10	0.08	< 0.01	< 0.01
		7	0.01	0.01	< 0.01	< 0.01	0.10	0.09	< 0.01	< 0.01
	150 mg/kg	10	0.01	< 0.01	< 0.01	< 0.01	0.09	0.09	< 0.01	< 0.01
	飼料	14	0.01	< 0.01	< 0.01	< 0.01	0.09	0.08	< 0.01	< 0.01
		17	0.01	< 0.01	< 0.01	< 0.01	0.09	0.08	< 0.01	< 0.01
		21	0.02	< 0.01	< 0.01	< 0.01	0.10	0.09	< 0.01	< 0.01
		24	0.02	0.01	< 0.01	< 0.01	0.10	0.09	< 0.01	< 0.01
		28	0.02	0.01	< 0.01	< 0.01	0.08	0.07	0.01	< 0.01

		lok4.E		残留值(μg/g)									
試料	投与群	試料 採取日 (日)	ピジフ フュ	ルメト	I	7	I	ł	1	N			
		(口)	最大値	平均値	最大値	平均値	最大値	平均值	最大値	平均值			
	15 mg/kg	14	_	_	_	_	< 0.01	< 0.01	ND	ND			
	飼料	28	_	_	_	_	< 0.01	< 0.01	ND	ND			
無脂肪	45 mg/kg	14	_	_	_	_	0.01	0.01	< 0.01	< 0.01			
乳	飼料	28	_	_	_	_	0.01	0.01	< 0.01	< 0.01			
	150 mg/kg	14	< 0.01	< 0.01	< 0.01	< 0.01	0.08	0.08	< 0.01	< 0.01			
	飼料	28	ND	ND	< 0.01	< 0.01	0.09	0.08	0.01	< 0.01			
	15 mg/kg	14	0.01	0.01	_	_	0.02	< 0.01	_	_			
	飼料	28	0.01	0.01	_	_	0.01	< 0.01	_	_			
クリー	45 mg/kg	14	0.04	0.03	_	_	0.02	0.02	_	_			
ム	飼料	28	0.04	0.04	_	_	0.02	0.02	_				
	150 mg/kg	14	0.14	0.13	ND	ND	0.06	0.06	< 0.01	< 0.01			
	飼料	28	0.20	0.16	ND	ND	0.05	0.05	< 0.01	< 0.01			

-:分析せず ND:検出されず

② 組織及び脂肪中残留値

					残留值	<u>[</u> (μg/g)			
試料	投与群		ルメト	Al	Ah2		H]	
		最大値	平均値	最大値	平均値	平均値 最大値 平均値 最大値 平均値	平均値		
	15 mg/kg 飼料	_					_	_	_
筋肉	45 mg/kg 飼料	< 0.01	< 0.01				_	_	_
	150 mg/kg 飼料	< 0.01	< 0.01	_	_	< 0.01	< 0.01	_	_
取時用江	15 mg/kg 飼料	0.01	0.01	_	_	ND	ND	_	_
腎臓周辺	45 mg/kg 飼料	0.06	0.05	_	_	0.01	< 0.01	_	_
	150 mg/kg 飼料	0.11	0.08	_	_	0.01	< 0.01	_	_
阳阳畔	15 mg/kg 飼料	0.02	0.01	_	_	_	_	_	_
腸間膜	45 mg/kg 飼料	0.06	0.05	_	_	_	_	_	_
脂肪	150 mg/kg 飼料	0.17	0.10	_	_	< 0.01	< 0.01	最大値 平	_
	15 mg/kg 飼料	0.02	< 0.01	_	_	_	_	_	_
皮下脂肪	45 mg/kg 飼料	0.04	0.02	_	_		_	_	_
	150 mg/kg 飼料	0.11	0.05			< 0.01	< 0.01	_	_
	15 mg/kg 飼料	0.02	0.01	0.06	0.04	< 0.01	< 0.01	_	_
肝臓	45 mg/kg 飼料	0.05	0.04	0.36	0.22	0.03	0.03	ND	ND
	150 mg/kg 飼料	0.12	0.09	0.59	0.56	0.08	0.07	< 0.01	< 0.01
	15 mg/kg 飼料	_	_	0.06	0.05	0.01	0.01	< 0.01	< 0.01
腎臓	45 mg/kg 飼料	< 0.01	< 0.01	0.24	0.17	0.05	0.05	0.02	0.02
	150 mg/kg 飼料	0.03	0.02	0.58	0.41	0.21	0.17	0.10	0.08

- : 分析せず ND : 検出されず

<別紙6:畜産物残留試験成績(産卵鶏)>

		試料		残留値(μg/g)	
試料	投与群	採取日a	ピジフルス	メトフェン	H	H
		(目)	最大値	平均値	最大値	平均値
		1	< 0.01	< 0.01	< 0.01	< 0.01
		3	< 0.01	< 0.01	< 0.01	< 0.01
		7	< 0.01	< 0.01	< 0.01	< 0.01
	3 mg/kg 飼料	10	< 0.01	< 0.01	< 0.01	< 0.01
		14	< 0.01	< 0.01	< 0.01	< 0.01
		17	< 0.01	< 0.01	< 0.01	< 0.01
		24	< 0.01	< 0.01	< 0.01	< 0.01
		1	< 0.01	< 0.01	< 0.01	< 0.01
		3	< 0.01	< 0.01	0.01	0.01
		7	< 0.01	< 0.01	0.01	0.01
全卵	9 mg/kg 飼料	10	< 0.01	< 0.01	0.01	0.01
		14	0.01	0.01	0.01	0.01
		17	0.01	0.01	0.01	0.01
		24	< 0.01	< 0.01	0.01	0.01
		1	< 0.01	< 0.01	< 0.01	< 0.01
		3	0.03	0.03	0.02	0.01
		7	0.03	0.02	0.03	0.03
	30 mg/kg 飼料	10	0.03	0.02	0.04	0.03
		14	0.03	0.02	0.04	0.03
		17	0.03	0.02	0.04	0.03
		24	0.03	0.02	0.04	0.03
	3 mg/kg 飼料	21	< 0.01	< 0.01	< 0.01	< 0.01
	o mg/kg gh/h	28	< 0.01	< 0.01	< 0.01	< 0.01
	9 mg/kg 飼料	21	0.02	0.01	< 0.01	< 0.01
	o mg/ng kh/h	28	< 0.01	< 0.01	< 0.01	< 0.01
卵白		21	0.04	0.03	< 0.01	< 0.01
7F H		28	0.03	0.03	< 0.01	< 0.01
	30 mg/kg 飼料	31	<0.01	< 0.01	< 0.01	< 0.01
	OO mg/kg kel/a	35	< 0.01	< 0.01	< 0.01	< 0.01
		38	< 0.01	< 0.01	< 0.01	< 0.01
		42	< 0.01	< 0.01	< 0.01	< 0.01

		試料		残留値(μg/g)	
試料	投与群	採取日	ピジフルス	メトフェン	H	H
		(目)	最大値	平均値	接対値 最大値 10.01 0.01 0.01 0.02 0.01 0.05 0.01	平均値
	о л А ЭМ	21	< 0.01	< 0.01	< 0.01	< 0.01
	3 mg/kg 飼料	28	< 0.01	< 0.01	0.01	0.01
		21	< 0.01	< 0.01	0.02	0.02
	9 mg/kg 飼料	28	< 0.01	< 0.01	0.03	0.02
nu 井		21	0.01	0.01	0.06	0.05
卵黄		28	0.01	0.01	0.07	0.05
		31	< 0.01	< 0.01	0.05	0.04
	30 mg/kg 飼料	35	< 0.01	< 0.01	< 0.01	< 0.01
		38	< 0.01	< 0.01	< 0.01	< 0.01
		42	< 0.01	< 0.01	< 0.01	< 0.01
	3 mg/kg 飼料	28	_	_		_
	9 mg/kg 飼料	28		_	_	_
筋肉		28	< 0.01	< 0.01	< 0.01	< 0.01
肋闪	20	31	< 0.01	< 0.01	< 0.01	< 0.01
	30 mg/kg 飼料	35	< 0.01	< 0.01	< 0.01	< 0.01
		42	< 0.01	< 0.01	< 0.01	< 0.01
	3 mg/kg 飼料	28		_	_	_
	9 mg/kg 飼料	28	_	_	_	_
肝臓		28	< 0.01	< 0.01	< 0.01	< 0.01
刀丨加蚁	20	31	< 0.01	< 0.01	< 0.01	< 0.01
	30 mg/kg 飼料	35	< 0.01	< 0.01	< 0.01	< 0.01
		42	< 0.01	大値 平均値 最大値 平均値 0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.01 0.01 0.01 <0.01 0.02 0.02 0.01 <0.01 0.03 0.02 0.01 <0.01 0.06 0.05 0.01 0.01 0.07 0.05 0.01 <0.01 0.05 0.04 0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01	< 0.01	
	3 mg/kg 飼料	28	< 0.01	< 0.01	< 0.01	< 0.01
	9 mg/kg 飼料	28	< 0.01	< 0.01	0.02	0.02
腎臓		28	< 0.01	< 0.01	0.05	0.05
月 開	30 mg/kg 飼料	31	< 0.01	< 0.01	< 0.01	< 0.01
	50 mg/kg 即称	35	< 0.01	< 0.01	< 0.01	< 0.01
		42	< 0.01	< 0.01	< 0.01	< 0.01
	3 mg/kg 飼料	28	_	_	_	_
	9 mg/kg 飼料	28	_	_	_	_
脂肪		28	< 0.01	< 0.01	< 0.01	< 0.01
カ日ガノノ	30 mg/kg 飼料	31	< 0.01	< 0.01	< 0.01	< 0.01
	ou mg/kg 時作	35	< 0.01	< 0.01	< 0.01	< 0.01
	・分析せず a・投与!	42 開始後日数	< 0.01	< 0.01	< 0.01	< 0.01

-:分析せず a:投与開始後日数

<別紙7:推定摂取量>

		国国	上平均	小児(1	~6歳)	妇	· · · · ·	高齢者(6	5歳以上)
曲女女师友	残留値	(体重:	55.1 kg)	(体重:	(体重:16.5 kg)		58.5 kg)	(56.	1 kg)
農畜産物名	(mg/kg)	ff	摂取量	ff	摂取量	ff	摂取量	ff	摂取量
		(g/人/日)	(µg/人/目)	(g/人/日)	(µg/人/目)	(g/人/日)	(µg/人/日)	(g/人/日)	(µg/人/日)
小麦	0.358	59.8	21.4	44.3	15.9	69.0	24.7	49.9	17.9
大麦	1.64	5.3	8.69	4.4	7.22	8.8	14.4	4.4	7.22
その他のかんき つ類果実	0.21	5.9	1.24	2.7	0.57	2.5	0.53	9.5	2.00
りんご	0.46	24.2	11.1	30.9	14.2	18.8	8.65	32.4	14.9
その他のスパイ ス	1.38	0.1	0.14	0.1	0.14	0.1	0.14	0.2	0.28
牛・筋肉と脂肪	0.02	15.3	0.31	9.7	0.19	20.9	0.42	9.9	0.20
牛・肝臓	0.02	0.1	0.00	0	0.00	1.4	0.03	0	0.00
牛・その他の 食用部分	0.02	0.5	0.01	0	0.00	3.4	0.07	0.4	0.01
その他陸棲哺乳 類・筋肉と脂肪 と肝臓と腎臓と 食用部分	0.02	0.4	0.01	0.1	0.00	0.4	0.01	0.4	0.01
合計			42.9		38.2		49.0		42.5

- ・農産物の残留値は、登録又は申請されている使用時期・回数によるピジフルメトフェンの平均残留値のうち最大値を用いた(参照 別紙3)。
- ・畜産物残留値は、飼料として利用される作物におけるピジフルメトフェンの残留値を考慮して、泌乳牛の 15~mg/kg 飼料相当投与群及び産卵鶏の 3~mg/kg 飼料相当投与群におけるピジフルメトフェンの最大残留値を用いた(参照 別紙 5~ 及び 6)。
- ・「ff」: 平成 $17\sim19$ 年の食品摂取頻度・摂取量調査 (参照 83) の結果に基づく食品摂取量 (g/人/日)
- ・「摂取量」:残留値及び食品摂取量から求めたピジフルメトフェンの推定摂取量(µg/人/日)
- ・『その他のかんきつ類果実』については、かぼす、すだち、ゆずのうち残留値の最も高いかぼすの 値を用いた。
- ・『その他のスパイス』については、温州みかん(果皮)の値を用いた。
- ・『牛・その他食用部分』及び『その他陸棲ほ乳類・筋肉と脂肪と肝臓と腎臓と食用部分』については、牛の推定摂取量の算出に用いた残留値のうち最大値を用いた。
- ・温州みかん(果肉)については、全データが定量限界未満であったことから、摂取量の計算に含めていない。
- ・牛・腎臓及び乳は、15 mg/kg 飼料投与群におけるピジフルメトフェンがいずれも定量限界 $(0.01 \mu\text{g/g})$ 未満であったため、摂取量の計算に用いなかった。
- ・鶏及びその他家きんに関する畜産物は、3 mg/kg 飼料投与群におけるピジフルメトフェンがいずれも定量限界 $(0.01~\mu g/g)$ 未満であったため、摂取量の計算に用いなかった。

<参照>

- 1 食品健康影響評価について(平成31年4月17日付け厚生労働省発生食0417第 11号)
- 2 ピジフルメトフェン 試験成績の概要及び考察(平成 30 年 1 月 30 日): シンジェンタジャパン株式会社、一部公表
- 3 Pydiflumetofen Pharmacokinetics of [Phenyl-U-14C] and [Pyrazole-5-14C]-PydiflumetofenFollowing Single Oral and Intravenous Administration in the Rat (GLP): Charles River(英国)、2015 年、未公表
- 4 Pydiflumetofen The Absorption and Excretion of [Phenyl-U-14C] and [Pyrazole-5-14C]-Pydiflumetofen Following Single Oral Administration in the Rat (GLP): Charles River(英国)、2015 年、未公表
- 5 Pydiflumetofen Tissue Depletion of [Phenyl-U-14C] and [Pyrazole-5-14C]-Pydiflumetofen Following Single Oral Administration in the Rat (GLP): Charles River(英国)、2015 年、未公表
- 6 Pydiflumetofen Biotransformation of [14C]- Pydiflumetofen in Rat (GLP): Charles River(英国)、2015 年、未公表
- 7 Pydiflumetofen Pharmacokinetics of Pydiflumetofen in the Rat Following Multiple Oral and Single Intravenous Administration (GLP): Charles River (英国)、2014 年、未公表
- 8 Pydiflumetofen The Excretion and Biotransformation of [Phenyl-U-¹⁴C] and [Pyrazole-5-¹⁴C]-Pydiflumetofen Following Single Oral Administration in the Mouse (GLP): Charles River Laboratories Edinburgh Ltd. (英国)、2015 年、未公表
- 9 Pydiflumetofen Pharmacokinetics of Pydiflumetofen in the Mouse Following Multiple Oral and Single Intravenous Administration (GLP): Charles River (英国)、2014年、未公表
- 10 Pydiflumetofen Oral (Gavage) Toxicokinetic Study in the Pregnant Rabbit (GLP): Sequani Ltd. (英国) 、2014 年、未公表
- 11 Pydiflumetofen Metabolism of [14C]-Pydiflumetofen in the Lactating Goat (GLP): Charles River Laboratories Edinburgh Ltd. (英国) 、2015 年、未公表
- 12 Pydiflumetofen Metabolism of [14C]- Pydiflumetofen in the Laying Hen (GLP): Charles River Laboratories Edinburgh Ltd. (英国)、2015 年、未公表
- 13 Pydiflumetofen Metabolism of [14C]-Pydiflumetofen in Wheat (GLP): Charles River(英国)、2014 年、未公表
- 14 Pydiflumetofen Metabolism of [14C]-Pydiflumetofen in Tomatoes (GLP): Charles River、2014 年、未公表
- 15 Pydiflumetofen Metabolism of [14C]-Pydiflumetofen in Oilseed Rape (GLP): Charles River、2015 年、未公表

- 16 Pydiflumetofen Aerobic Soil Metabolism of [14C] Pydiflumetofen (GLP): Smithers Viscient (ESG) Ltd. (英国) 、2015 年、未公表
- 17 Pydiflumetofen Anaerobic Soil Metabolism of ¹⁴C⁻ Pydiflumetofen (GLP): Smithers Viscient (ESG) Ltd. (英国) 、2015 年、未公表
- 18 Pydiflumetofen Soil Photolysis of ¹⁴C- Pydiflumetofen (GLP): Smithers Viscient (ESG) Ltd. (英国) 、2014 年、未公表
- 19 Pydiflumetofen Adsorption and Desorption of ¹⁴C- Pydiflumetofen (GLP): Smithers Viscient (ESG) Ltd. (英国) 、2013 年、未公表
- 20 Pydiflumetofen の土壌吸着係数試験 (GLP): 一般財団法人化学物質評価研究機構、2015年、未公表
- 21 ¹⁴C- Pydiflumetofen: Hydrolysis in Sterile Buffer at pH 4, 7 and 9 (GLP): Smithers Viscient (ESG) Ltd. (英国) 、2015 年、未公表
- 22 Pydiflumetofen Aqueous Photolysis of [14C] Pydiflumetofen (GLP): Smithers Viscient (ESG) Ltd. (英国) 、2015 年、未公表
- 23 農薬の土壌残留試験報告書(畑地状態の圃場試験): シンジェンタ ジャパン株式 会社、2016年、未公表
- 24 Pydiflumetofen SC 小麦 作物残留試験(GLP): 一般社団法人日本植物防疫協会、2015 年、未公表
- 25 Pydiflumetofen SC 小麦 作物残留試験(GLP):一般社団法人日本植物防疫協会、2016年、未公表
- 26 ピジフルメトフェンの海外における残留基準値および適正農業規範:シンジェンタジャパン株式会社、2018 年、一部公表
- 27 ピジフルメトフェン海外作物残留試験報告書:シンジェンタ ジャパン株式会社、 2015 年、未公表
- 28 後作残留試験(ほうれんそう、かぶ): 一般財団法人残留農薬研究所、2018 年、 未公表
- 29 農薬残留分析結果報告書(後作残留試験 かぶ根部):シンジェンタジャパン株 式会社、2016 年、未公表
- 30 農薬残留分析結果報告書(後作残留試験 かぶ葉部):シンジェンタジャパン株 式会社、2016 年、未公表
- 31 農薬残留分析結果報告書(後作残留試験 ほうれんそう):シンジェンタジャパン株式会社、2016 年、未公表
- 32 Pydiflumetofen Magnitude of Residues in Milk and Tissues of Dairy Cows Following Multiple Oral Administrations of Pydiflumetofen (GLP): Charles River Laboratories Edinburgh Ltd. (英国)、2015年、未公表
- 33 Pydiflumetofen Magnitude of the Residues in Tissue and Eggs Resulting from the Feeding of Three Dose Levels to Poultry 2014 (GLP): Syngenta Crop Protection, LLC (米国)、2015年、未公表

- 34 Pydiflumetofen Modified Irwin Study in Female Rats (Single Oral Administration) (GLP): Envigo CSR Ltd. (英国) 、2016 年、未公表
- 35 Pydiflumetofen Evaluation of the Cardiovascular System and Respiratory Parameters in the Conscious Rat using Telemetry and Whole Body Bias Flow Plethysmography (Oral Administration) (GLP): Envigo CSR Ltd. (英国)、2016 年、未公表
- 36 Pydiflumetofen Acute Oral Toxicity Study in the Rat (Up and Down Procedure) (GLP): CiToxLAB Hungary Ltd. (ハンガリー) 、2012 年、未公表
- 37 Pydiflumetofen Acute Dermal Toxicity Study in Rats (GLP): CiToxLAB Hungary Ltd. (ハンガリー) 、2013 年、未公表
- 38 Pydiflumetofen Acute Inhalation Toxicity Study (Nose-Only) in the Rat (GLP): CiToxLAB Hungary Ltd. (ハンガリー) 、2013 年、未公表
- 39 代謝物 F Acute oral toxicity study in rats (GLP): Bioassay Labor fur biologische Analytik GmbH(ドイツ)、2009 年、未公表
- 40 代謝物 G Screening Acute Oral Toxicity Study in the Rat (GLP): Harlan Laboratories Ltd. (英国) 、2008 年、未公表
- 41 Pydiflumetofen Acute Oral (Gavage) Neurotoxicity Study in the Wistar Rat (GLP): Harlan Laboratories Ltd. (スイス) 、2015 年、未公表
- 42 Pydiflumetofen An Abbreviated Acute Oral (Gavage) Neurotoxicity Study in the Female Wistar Rat (GLP): Harlan Laboratories Ltd. (スイス)、2015 年、未公表
- 43 Pydiflumetofen Acute Eye Irritation Study in Rabbits (GLP) : CiToxLAB Hungary Ltd. (ハンガリー) 、2012 年、未公表
- 44 Pydiflumetofen Primary Skin Irritation Study in Rabbits (GLP): CiToxLAB Hungary Ltd. (ハンガリー) 、2012 年、未公表
- 45 Pydiflumetofen Local Lymph Node Assay in the Mouse (GLP): CiToxLAB Hungary Ltd. (ハンガリー) 、2013 年、未公表
- 46 Pydiflumetofen A 13 Week Toxicity Study of Pydiflumetofen by Oral (Dietary) Administration in Rats (GLP): Charles River(英国)、2015 年、未公表
- 47 Pydiflumetofen A 13 Week Toxicity Study of Pydiflumetofen by Oral (Dietary) Administration in Mice (GLP): Charles River(英国)、2015 年、未公表
- 48 Pydiflumetofen 90 Day Oral (Capsule) Study in the Dog (GLP) : Sequani Ltd. (英国) 、2015 年、未公表
- 49 Pydiflumetofen 28-Day Dermal Toxicity Study in the Wistar Rat (GLP): Harlan Laboratories Ltd. (スイス) 、2013 年、未公表
- 50 代謝物 F A 28 Day Dietary Toxicity Study in Rats (GLP): Charles River

- Laboratories Preclinical Services (英国) 、2015 年、未公表
- 51 代謝物 G 28-Day Oral (Dietary) Toxicity Study in Wistar Rat (GLP): Harlan Laboratories Ltd.(スイス)、2010 年、未公表
- 52 代謝物 G Repeated dose 90-day oral toxicity study in Wistar rats; Administration in the diet (GLP): Experimental Toxicology and Ecology BASF SE (ドイツ)、2009年、未公表
- 53 Pydiflumetofen 52 Week Oral (Capsule) Toxicity Study in the Dog (GLP): Sequani Ltd. (英国) 、2015 年、未公表
- 54 Pydiflumetofen 104 Week Rat Dietary Carcinogenicity Study with a Combined 52 Week Toxicity Study (GLP): Charles River Laboratories Preclinical Services (英国)、2015 年、未公表
- 55 Pydiflumetofen 80 Week Mouse Dietary Carcinogenicity Study (GLP): Charles River Laboratories Preclinical Services(英国)、2015 年、未公表
- 56 Pydiflumetofen Oral (Dietary) Two-Generation Reproduction Toxicity Study in the Rat (GLP): Sequani Ltd. (英国) 、2015 年、未公表
- 57 Pydiflumetofen Oral (Gavage) Prenatal Developmental Toxicity Study in the Rat (GLP): Seguani Ltd. (英国) 、2015 年、未公表
- 58 Pydiflumetofen Oral (Gavage) Prenatal Developmental Toxicity Study in the Rabbit (GLP): Sequani Ltd. (英国) 、2015 年、未公表
- 59 代謝物 G Prenatal Developmental Toxicity Study in New Zealand White Rabbits Oral Administration (Gavage) (GLP): Experimental Toxicology and Ecology, BASF SE(ドイツ)、2009 年、未公表
- 60 Pydiflumetofen Salmonella Typhimurium and Escherichia Coli Reverse Mutation Assay (GLP): Harlan Cytotest Cell Research GmbH (ドイツ)、2014 年、未公表
- 61 Pydiflumetofen Salmonella Typhimurium and Escherichia Coli Reverse Mutation Assay (GLP): Harlan Cytotest Cell Research GmbH(ドイツ)、2012 年、未公表
- 62 Pydiflumetofen Chromosome Aberration Test in Human Lymphocytes *In Vitro* (GLP): Envigo CRS GmbH(ドイツ)、2013 年、未公表
- 63 Pydiflumetofen Cell Mutation Assay at the Thymidine Kinase Locus (TK+/-) in Mouse Lymphoma L5178Y Cells (GLP): Harlan Cytotest Cell Research GmbH (ドイツ)、2013年、未公表
- 64 Pydiflumetofen Micronucleus Assay in Bone Marrow Cells of the Mouse (GLP): Harlan Cytotest Cell Research GmbH (ドイツ) 、2014 年、未公表
- 65 Pydiflumetofen Micronucleus Assay in Bone Marrow Cells of the Mouse (GLP): Harlan Cytotest Cell Research GmbH(ドイツ)、2012 年、未公表
- 66 代謝物 F Salmonella Typhimurium and Escherichia Coli Reverse Mutation

- Assay (GLP): Harlan Cytotest Cell Research GmbH(ドイツ)、2014 年、未公表
- 67 代謝物 F *In vitro* Chromosome Aberration Test in Human Lymphocytes (GLP): Harlan Cytotest Cell Research GmbH (ドイツ)、2013 年、未公表
- 68 代謝物 F Cell Mutation Assay at the Thymidine Kinase Locus (TK+/-) in Mouse Lymphoma L5178Y Cells (GLP): Harlan Cytotest Cell Research GmbH (ドイツ)、2013 年、未公表
- 69 代謝物 F Micronucleus Assay in Bone Marrow Cells of the Rat (GLP): Harlan Cytotest Cell Research GmbH(ドイツ)、2014 年、未公表
- 70 代謝物 G Salmonella Typhimurium and Escherichia Coli Reverse Mutation Assay (GLP): RCC Cytotest Cell Research GmbH(ドイツ)、2007年、未公表
- 71 代謝物 G Chromosome Aberration Test in Human Lymphocytes *in Vitro* (GLP): Harlan Cytotest Cell Research GmbH (ドイツ)、2009 年、未公表
- 72 代謝物 G Cell Mutation Assay at the Thymidine Kinase Locus (TK+/-) in Mouse Lymphoma L5178Y Cells (GLP): Harlan Cytotest Cell Research GmbH (ドイツ)、2009 年、未公表
- 73 Pydiflumetofen A 28-Day Dietary Liver Mode of Action Study in Male CD-1 Mices: CXR Biosciences Ltd. (英国) 、2015 年、未公表
- 74 Pydiflumetofen *In Vitro* Hepatocyte Proliferation Index and Enzyme Activity Measurements in Male CD-1 Mouse Hepatocyte Cultures: CXR Biosciences Ltd. (英国) 、2015 年、未公表
- 75 Pydiflumetofen *In Vitro* Hepatocyte Proliferation Index And Enzyme Activity Measurements in Male Human Hepatocyte Cultures: CXR Biosciences Ltd. (英国)、2015年、未公表
- 76 Pydiflumetofen CAR3 Transactivation Assay with Mouse, Rat and Human CAR: Department of Veterinary & Biomedical Sciences, Penn State University (米国)、2014年、未公表
- 77 EX-vivo Enzyme Analysis of Liver Samples Taken at Termination of a 28 Day Dietary Study of Pydiflumetofen in the Mouse: CXR Biosciences Ltd. (英国)、2012 年、未公表
- 78 Pydiflumetofen Effect on Hepatic UDPglucuronosyltransferase Activity Towards Thyroxine as Substrate After Dietary Administration for 90 Days to Male Rats: Leatherhead Food Research(英国)、2014 年、未公表
- 79 Pydiflumetofen Effect on Rat Thyroid Peroxidase Activity *In Vitro*: Leatherhead Food Research(英国)、2014 年、未公表
- 80 JMPR:"Pydiflumetofen", Pesticide residues in food-2018 evaluations. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in

- Food and the Environment and the WHO Core Assessment Group on Pesticide Residues. p291-318 (2018)
- US EPA: Pydiflumetofen. Human Health Risk Assessment for Foliar Uses on Cereals (Wheat, Triticale, Barley, Rye, and Oat), Quinoa, Corn (Field, Pop, and Sweet), Cucurbits Crop Group 9 (Including Greenhouse Use on Cucumber), Fruiting Vegetables Crop Group 8-10, Small Fruit Vine Climbing Subgroup 13-07F (Except Fuzzy Kiwifruit), Peas and Bean Dried Shelled Subgroup 6C, Leafy Greens Subgroup 4-16A, Leaf Petiole Vegetables Subgroup 22B, Peanuts, Rapeseed Subgroup 20A, Soybean, Tuberous and Corm Vegetable Subgroup 1C, Golf Course Turf, and Ornamentals (Including Greenhouse Use). (2018)
- 82 APVMA: Public Release Summary on the evaluation of pydiflumetofen in the product Miravis Fungicide. (2018)
- 83 平成 17~19 年の食品摂取頻度・摂取量調査(薬事・食品衛生審議会食品衛生分科会農薬・動物用医薬品部会資料、2014 年 2 月 20 日)
- 84 食品健康影響評価の結果の通知について(令和元年11月12日付け府食第450号)
- 85 食品、添加物等の規格基準(昭和34年厚生省告示第370号)の一部を改正する 件(令和2年11月16日付け令和2年厚生労働省告示第356号)
- 86 食品健康影響評価について(令和 4 年 10 月 19 日付け厚生労働省発生食 1019 第 8 号)
- 87 ピジフルメトフェン 試験成績の概要及び考察(令和3年1月27日):シンジェンタジャパン株式会社、一部公表
- 88 Pydiflumetofen SC 大麦 作物残留試験(GLP):一般社団法人日本植物防疫協会、2016年、未公表
- 89 Pydiflumetofen SC りんご 作物残留試験(GLP):一般社団法人日本植物防疫協会、2020年、未公表
- 90 Pydiflumetofen SC りんご 作物残留試験(GLP):一般社団法人日本植物防疫協会、2021年、未公表
- 91 Pydiflumetofen / Difenoconazole SC 温州みかん 作物残留試験(GLP): 一般社団法人日本植物防疫協会、2021年、未公表
- 92 Pydiflumetofen / Difenoconazole SC かぼす、すだち、ゆず 作物残留試験: 一般社団法人日本植物防疫協会、2020年、未公表
- 93 Magnitude of the Residues of Pydiflumetofen and Difenoconazole in Root Vegetables and Sugar Beet Processed Commodities Following Applications of A20259E (GLP): Landis International, Inc. (米国) 、2018年、未公表
- 94 Pydiflumetofen SC Magnitude of the Residues in or on Sugarbeet Canada 2016 (GLP): Syngenta Crop Protection, LLC(米国)、2018 年、未公表
- 95 Pydiflumetofen SC Magnitude of the Residue in or on Mustard Greens USA

- 2016 (GLP) : SynTech Research Laboratory Services, LLC(米国)、2018 年、未公表
- 96 Pydiflumetofen SC Magnitude of the Residues in Brassica Head and Stem Raw Agricultural Commodities USA 2016 (GLP): American Agricultural Services, Inc. (米国)、2018年、未公表
- 97 Pydiflumetofen SC (A19649B) Magnitude of the Residues in Onion (Green & Bulb) Raw Agricultural Commodities Following Foliar Application USA 2016 (GLP): American Agricultural Services, Inc. (米国) 、2018 年、未公表
- 98 Pydiflumetofen SC Magnitude of the Residue on Cucumber (Field & Greenhouse) (GLP): IR-4 Project Headquarters Rutgers, The State University of NJ(米国)、2015 年、未公表
- 99 Pydiflumetofen SC: MAGNITUDE OF THE RESIDUE ON SUMMER SQUASH (GLP): IR-4 Project Headquarters Rutgers, The State University of NJ(米国)、2015 年、未公表
- 100 Pydiflumetofen SC Magnitude of the Residue on Cantaloupe (GLP): IR-4 Project Headquarters Rutgers, The State University of NJ(米国)、2015 年、未公表
- 101 Pydiflumetofen SC Magnitude of the Residues in or on Cucurbit Vegetables (Crop Group 9) USA 2019 (GLP): Global Agricultural Development Corporation (米国)、2020年、未公表
- 102 Pydiflumetofen SC Magnitude of the Residues in or on Representative Raw Agricultural Commodities of the Edible-Podded Legume Vegetables Crop Subgroup (6A) and the Succulent Shelled Pea and Bean Crop Subgroup (6B) USA 2016 (GLP): The Carringers, Inc. (米国)、2018 年、未公表
- 103 Magnitude of the Residues of Pydiflumetofen in Citrus and Orange Processed Commodities Following Applications of A19649B (GLP): Landis International, Inc. (米国) 、2018 年、未公表
- 104 Pydiflumetofen SC Magnitude of the Residues in or on Apple and Pear as Representative Commodities of Pome Fruits, Group 11 USA 2014 (GLP):
 Syngenta Crop Protection, LLC(米国)、2017年、未公表
- 105 Pydiflumetofen Magnitude of the Residue on Peach (GLP): Pest Management Centre、Agriculture and Agri-Food Canada(カナダ)、2018 年、未公表
- 106 Pydiflumetofen SC Magnitude of the Residues in or on Representative Raw Agricultural and Processed Commodities of the Peach Crop Subgroup (12-12B) and the Plum Crop Subgroup (12-12C) USA 2016 (GLP): The Carringers, Inc. (米国) 、2018 年、未公表
- 107 Pydiflumetofen Magnitude of the Residue on Plum (GLP): Pest Management Centre, Agriculture and Agri-Food Canada(カナダ)、2018 年、未公表

- 108 Pydiflumetofen Magnitude of the Residue on Cherry (GLP): Pest Management Centre, Agriculture and Agri-Food Canada (カナダ)、2018 年、 未公表
- 109 Pydiflumetofen Magnitude of the Residue on Strawberry (GLP): IR-4 Project Headquarters, Rutgers, The State University of NJ(米国)、2016 年、未公表
- 110 PYDIFLUMETOFEN: MAGNITUDE OF THE RESIDUE ON CANEBERRY (GLP): IR-4 Project Headquarters, Rutgers, The State University of NJ (米国)、2021 年、未公表
- 111 Pydiflumetofen Magnitude of the Residue on Blueberry(GLP): IR-4 Project Headquarters, Rutgers, The State University of NJ(米国)、2017 年、未公表
- 112 Pydiflumetofen SC & Fludioxonil SC (A20560C) Magnitude of the Residues in or on Blueberry Canada 2015 and 2016 (GLP): Syngenta Crop Protection, LLC (米国) 、2018 年、未公表
- 113 Pydiflumetofen SC Magnitude of the Residues in or on the Representative Raw Agricultural and Processed Commodities of the Sunflower Crop Subgroup (20B) USA 2016 (GLP): The Carringers, Inc. (米国) 、2018 年、未公表
- 114 Pydiflumetofen SC Magnitude of the Residues in or on Sunflower Canada 2016 (GLP): Syngenta Crop Protection, LLC(米国)、2018 年、未公表
- 115 Pydiflumetofen SC Magnitude of the Residue in or on Cotton USA 2016 (GLP): SynTech Research Laboratory Services, LLC(米国)、2018 年、未公表
- 116 Pydiflumetofen SC Magnitude of the Residues in or on Almonds and Pecans as Representative Crops of Tree Nuts, Group 14 USA 2014 (GLP): Syngenta Crop Protection, LLC (米国)、2018 年、未公表
- 117 Pydiflumetofen In Vitro Comparative Metabolism of [Phenyl-U-14C] Pydiflumetofen and [Pyrazole-5-14C]Pydiflumetofen in Human and Rat Liver Microsomes (GLP)、Innovative Environmental Services Ltd(スイス)、2017 年、未公表
- 118 Pydiflumetofen 28 Day Dietary Toxicity Study in Rats (GLP)、Charles River (英国) 、2017 年、未公表
- 119 代謝物 H · 28 Day Oral (Gavage) Toxicity Study in the Rat (GLP)、Sequani Limited(英国)、2021 年、未公表
- 120 代謝物 H Salmonella Typhimurium and Escherichia Coli Reverse Mutation Assay (GLP)、ICCR-Roßdorf GmbH(ドイツ)、2020 年、未公表
- 121 EFSA: Peer review of the pesticide risk assessment of the active substance pydiflumetofen. 2019;17(10):5821(2019)
- 122 HC: Pydiflumetofen, A19649 Fungicide, A19649TO Fungicide, A20259

Fungicide, A20560 Fungicide, and A21461 Fungicide: Proposed Registration Decision(2018)